1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkOpSegment_DEFINE
#define SkOpSegment_DEFINE
#include "SkOpAngle.h"
#include "SkPathOpsBounds.h"
#include "SkPathOpsCurve.h"
#include "SkTDArray.h"
class SkPathWriter;
class SkOpSegment {
public:
SkOpSegment() {
#if DEBUG_DUMP
fID = ++gSegmentID;
#endif
}
bool operator<(const SkOpSegment& rh) const {
return fBounds.fTop < rh.fBounds.fTop;
}
const SkPathOpsBounds& bounds() const {
return fBounds;
}
// OPTIMIZE
// when the edges are initially walked, they don't automatically get the prior and next
// edges assigned to positions t=0 and t=1. Doing that would remove the need for this check,
// and would additionally remove the need for similar checks in condition edges. It would
// also allow intersection code to assume end of segment intersections (maybe?)
bool complete() const {
int count = fTs.count();
return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1;
}
bool done() const {
SkASSERT(fDoneSpans <= fTs.count());
return fDoneSpans == fTs.count();
}
bool done(int min) const {
return fTs[min].fDone;
}
bool done(const SkOpAngle* angle) const {
return done(SkMin32(angle->start(), angle->end()));
}
SkVector dxdy(int index) const {
return (*CurveSlopeAtT[fVerb])(fPts, fTs[index].fT);
}
SkScalar dy(int index) const {
return dxdy(index).fY;
}
bool intersected() const {
return fTs.count() > 0;
}
bool isCanceled(int tIndex) const {
return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0;
}
bool isConnected(int startIndex, int endIndex) const {
return fTs[startIndex].fWindSum != SK_MinS32 || fTs[endIndex].fWindSum != SK_MinS32;
}
bool isHorizontal() const {
return fBounds.fTop == fBounds.fBottom;
}
bool isVertical() const {
return fBounds.fLeft == fBounds.fRight;
}
bool isVertical(int start, int end) const {
return (*CurveIsVertical[fVerb])(fPts, start, end);
}
bool operand() const {
return fOperand;
}
int oppSign(const SkOpAngle* angle) const {
SkASSERT(angle->segment() == this);
return oppSign(angle->start(), angle->end());
}
int oppSign(int startIndex, int endIndex) const {
int result = startIndex < endIndex ? -fTs[startIndex].fOppValue : fTs[endIndex].fOppValue;
#if DEBUG_WIND_BUMP
SkDebugf("%s oppSign=%d\n", __FUNCTION__, result);
#endif
return result;
}
int oppSum(int tIndex) const {
return fTs[tIndex].fOppSum;
}
int oppSum(const SkOpAngle* angle) const {
int lesser = SkMin32(angle->start(), angle->end());
return fTs[lesser].fOppSum;
}
int oppValue(int tIndex) const {
return fTs[tIndex].fOppValue;
}
int oppValue(const SkOpAngle* angle) const {
int lesser = SkMin32(angle->start(), angle->end());
return fTs[lesser].fOppValue;
}
const SkPoint* pts() const {
return fPts;
}
void reset() {
init(NULL, (SkPath::Verb) -1, false, false);
fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
fTs.reset();
}
void setOppXor(bool isOppXor) {
fOppXor = isOppXor;
}
void setUpWinding(int index, int endIndex, int* maxWinding, int* sumWinding) {
int deltaSum = spanSign(index, endIndex);
*maxWinding = *sumWinding;
*sumWinding -= deltaSum;
}
// OPTIMIZATION: mark as debugging only if used solely by tests
const SkOpSpan& span(int tIndex) const {
return fTs[tIndex];
}
// OPTIMIZATION: mark as debugging only if used solely by tests
const SkTDArray<SkOpSpan>& spans() const {
return fTs;
}
int spanSign(const SkOpAngle* angle) const {
SkASSERT(angle->segment() == this);
return spanSign(angle->start(), angle->end());
}
int spanSign(int startIndex, int endIndex) const {
int result = startIndex < endIndex ? -fTs[startIndex].fWindValue : fTs[endIndex].fWindValue;
#if DEBUG_WIND_BUMP
SkDebugf("%s spanSign=%d\n", __FUNCTION__, result);
#endif
return result;
}
// OPTIMIZATION: mark as debugging only if used solely by tests
double t(int tIndex) const {
return fTs[tIndex].fT;
}
double tAtMid(int start, int end, double mid) const {
return fTs[start].fT * (1 - mid) + fTs[end].fT * mid;
}
bool unsortable(int index) const {
return fTs[index].fUnsortableStart || fTs[index].fUnsortableEnd;
}
void updatePts(const SkPoint pts[]) {
fPts = pts;
}
SkPath::Verb verb() const {
return fVerb;
}
int windSum(int tIndex) const {
return fTs[tIndex].fWindSum;
}
int windValue(int tIndex) const {
return fTs[tIndex].fWindValue;
}
SkScalar xAtT(int index) const {
return xAtT(&fTs[index]);
}
SkScalar xAtT(const SkOpSpan* span) const {
return xyAtT(span).fX;
}
const SkPoint& xyAtT(const SkOpSpan* span) const {
return span->fPt;
}
// used only by right angle winding finding
SkPoint xyAtT(double mid) const {
return (*CurvePointAtT[fVerb])(fPts, mid);
}
const SkPoint& xyAtT(int index) const {
return xyAtT(&fTs[index]);
}
SkScalar yAtT(int index) const {
return yAtT(&fTs[index]);
}
SkScalar yAtT(const SkOpSpan* span) const {
return xyAtT(span).fY;
}
bool activeAngle(int index, int* done, SkTDArray<SkOpAngle>* angles);
SkPoint activeLeftTop(bool onlySortable, int* firstT) const;
bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, SkPathOp op);
bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, SkPathOp op,
int* sumMiWinding, int* sumSuWinding, int* maxWinding, int* sumWinding,
int* oppMaxWinding, int* oppSumWinding);
bool activeWinding(int index, int endIndex);
bool activeWinding(int index, int endIndex, int* maxWinding, int* sumWinding);
void addCubic(const SkPoint pts[4], bool operand, bool evenOdd);
void addCurveTo(int start, int end, SkPathWriter* path, bool active) const;
void addLine(const SkPoint pts[2], bool operand, bool evenOdd);
void addOtherT(int index, double otherT, int otherIndex);
void addQuad(const SkPoint pts[3], bool operand, bool evenOdd);
int addSelfT(SkOpSegment* other, const SkPoint& pt, double newT);
int addT(SkOpSegment* other, const SkPoint& pt, double newT);
void addTCancel(double startT, double endT, SkOpSegment* other, double oStartT, double oEndT);
void addTCoincident(double startT, double endT, SkOpSegment* other, double oStartT,
double oEndT);
void addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind, const SkPoint& pt);
void addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind, const SkPoint& pt,
const SkPoint& oPt);
int addUnsortableT(SkOpSegment* other, bool start, const SkPoint& pt, double newT);
bool betweenTs(int lesser, double testT, int greater) const;
int computeSum(int startIndex, int endIndex, bool binary);
int crossedSpanY(const SkPoint& basePt, SkScalar* bestY, double* hitT, bool* hitSomething,
double mid, bool opp, bool current) const;
SkOpSegment* findNextOp(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd,
bool* unsortable, SkPathOp op, const int xorMiMask,
const int xorSuMask);
SkOpSegment* findNextWinding(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd,
bool* unsortable);
SkOpSegment* findNextXor(int* nextStart, int* nextEnd, bool* unsortable);
void findTooCloseToCall();
SkOpSegment* findTop(int* tIndex, int* endIndex, bool* unsortable, bool onlySortable);
void fixOtherTIndex();
void initWinding(int start, int end);
void initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind,
SkScalar hitOppDx);
bool isLinear(int start, int end) const;
bool isMissing(double startT) const;
bool isSimple(int end) const;
SkOpSpan* markAndChaseDoneBinary(int index, int endIndex);
SkOpSpan* markAndChaseDoneUnary(int index, int endIndex);
SkOpSpan* markAndChaseWinding(const SkOpAngle* angle, int winding, int oppWinding);
SkOpSpan* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding,
bool activeAngle, const SkOpAngle* angle);
void markDone(int index, int winding);
void markDoneBinary(int index);
void markDoneUnary(int index);
SkOpSpan* markOneWinding(const char* funName, int tIndex, int winding);
SkOpSpan* markOneWinding(const char* funName, int tIndex, int winding, int oppWinding);
void markWinding(int index, int winding);
void markWinding(int index, int winding, int oppWinding);
bool nextCandidate(int* start, int* end) const;
int nextExactSpan(int from, int step) const;
int nextSpan(int from, int step) const;
void setUpWindings(int index, int endIndex, int* sumMiWinding, int* sumSuWinding,
int* maxWinding, int* sumWinding, int* oppMaxWinding, int* oppSumWinding);
static bool SortAngles(const SkTDArray<SkOpAngle>& angles, SkTDArray<SkOpAngle*>* angleList);
void subDivide(int start, int end, SkPoint edge[4]) const;
void undoneSpan(int* start, int* end);
int updateOppWindingReverse(const SkOpAngle* angle) const;
int updateWindingReverse(const SkOpAngle* angle) const;
static bool UseInnerWinding(int outerWinding, int innerWinding);
int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar* dx) const;
int windSum(const SkOpAngle* angle) const;
int windValue(const SkOpAngle* angle) const;
#if DEBUG_DUMP
int debugID() const {
return fID;
}
#endif
#if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY
void debugShowActiveSpans() const;
#endif
#if DEBUG_SORT || DEBUG_SWAP_TOP
void debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first,
const int contourWinding, const int oppContourWinding) const;
void debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first);
#endif
#if DEBUG_CONCIDENT
void debugShowTs() const;
#endif
#if DEBUG_SHOW_WINDING
int debugShowWindingValues(int slotCount, int ofInterest) const;
#endif
private:
bool activeAngleOther(int index, int* done, SkTDArray<SkOpAngle>* angles);
bool activeAngleInner(int index, int* done, SkTDArray<SkOpAngle>* angles);
void addAngle(SkTDArray<SkOpAngle>* angles, int start, int end) const;
void addCancelOutsides(double tStart, double oStart, SkOpSegment* other, double oEnd);
void addCoinOutsides(const SkTDArray<double>& outsideTs, SkOpSegment* other, double oEnd);
void addTwoAngles(int start, int end, SkTDArray<SkOpAngle>* angles) const;
int advanceCoincidentOther(const SkOpSpan* test, double oEndT, int oIndex);
int advanceCoincidentThis(const SkOpSpan* oTest, bool opp, int index);
void buildAngles(int index, SkTDArray<SkOpAngle>* angles, bool includeOpp) const;
void buildAnglesInner(int index, SkTDArray<SkOpAngle>* angles) const;
int bumpCoincidentThis(const SkOpSpan& oTest, bool opp, int index,
SkTDArray<double>* outsideTs);
int bumpCoincidentOther(const SkOpSpan& test, double oEndT, int& oIndex,
SkTDArray<double>* oOutsideTs);
bool bumpSpan(SkOpSpan* span, int windDelta, int oppDelta);
bool clockwise(int tStart, int tEnd) const;
void decrementSpan(SkOpSpan* span);
bool equalPoints(int greaterTIndex, int lesserTIndex);
int findStartingEdge(const SkTDArray<SkOpAngle*>& sorted, int start, int end);
void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd);
void matchWindingValue(int tIndex, double t, bool borrowWind);
SkOpSpan* markAndChaseDone(int index, int endIndex, int winding);
SkOpSpan* markAndChaseDoneBinary(const SkOpAngle* angle, int winding, int oppWinding);
SkOpSpan* markAndChaseWinding(const SkOpAngle* angle, const int winding);
SkOpSpan* markAndChaseWinding(int index, int endIndex, int winding, int oppWinding);
SkOpSpan* markAngle(int maxWinding, int sumWinding, bool activeAngle, const SkOpAngle* angle);
void markDoneBinary(int index, int winding, int oppWinding);
SkOpSpan* markAndChaseDoneUnary(const SkOpAngle* angle, int winding);
void markOneDone(const char* funName, int tIndex, int winding);
void markOneDoneBinary(const char* funName, int tIndex);
void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding);
void markOneDoneUnary(const char* funName, int tIndex);
void markUnsortable(int start, int end);
bool monotonicInY(int tStart, int tEnd) const;
bool multipleSpans(int end) const;
SkOpSegment* nextChase(int* index, const int step, int* min, SkOpSpan** last);
bool serpentine(int tStart, int tEnd) const;
void subDivideBounds(int start, int end, SkPathOpsBounds* bounds) const;
bool tiny(const SkOpAngle* angle) const;
static void TrackOutside(SkTDArray<double>* outsideTs, double end, double start);
int updateOppWinding(int index, int endIndex) const;
int updateOppWinding(const SkOpAngle* angle) const;
int updateWinding(int index, int endIndex) const;
int updateWinding(const SkOpAngle* angle) const;
SkOpSpan* verifyOneWinding(const char* funName, int tIndex);
SkOpSpan* verifyOneWindingU(const char* funName, int tIndex);
int windValueAt(double t) const;
void zeroSpan(SkOpSpan* span);
#if DEBUG_SWAP_TOP
bool controlsContainedByEnds(int tStart, int tEnd) const;
#endif
#if DEBUG_CONCIDENT
void debugAddTPair(double t, const SkOpSegment& other, double otherT) const;
#endif
#if DEBUG_MARK_DONE || DEBUG_UNSORTABLE
void debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding);
void debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding, int oppWinding);
#endif
#if DEBUG_WINDING
static char as_digit(int value) {
return value < 0 ? '?' : value <= 9 ? '0' + value : '+';
}
#endif
const SkPoint* fPts;
SkPathOpsBounds fBounds;
SkTDArray<SkOpSpan> fTs; // two or more (always includes t=0 t=1)
// OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value
int fDoneSpans; // quick check that segment is finished
// OPTIMIZATION: force the following to be byte-sized
SkPath::Verb fVerb;
bool fOperand;
bool fXor; // set if original contour had even-odd fill
bool fOppXor; // set if opposite operand had even-odd fill
#if DEBUG_DUMP
int fID;
#endif
};
#endif
|