aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkOpSegment.h
blob: b4da929d99c4e573acf887292b43f8f64d371510 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#ifndef SkOpSegment_DEFINE
#define SkOpSegment_DEFINE

#include "SkOpAngle.h"
#include "SkOpSpan.h"
#include "SkPathOpsBounds.h"
#include "SkPathOpsCurve.h"
#include "SkTArray.h"
#include "SkTDArray.h"

#if defined(SK_DEBUG) || !FORCE_RELEASE
#include "SkThread.h"
#endif

struct SkCoincidence;
class SkPathWriter;

class SkOpSegment {
public:
    SkOpSegment() {
#if defined(SK_DEBUG) || !FORCE_RELEASE
        fID = sk_atomic_inc(&SkPathOpsDebug::gSegmentID);
#endif
    }

    bool operator<(const SkOpSegment& rh) const {
        return fBounds.fTop < rh.fBounds.fTop;
    }

    struct AlignedSpan  {
        double fOldT;
        double fT;
        SkPoint fOldPt;
        SkPoint fPt;
        const SkOpSegment* fSegment;
        const SkOpSegment* fOther1;
        const SkOpSegment* fOther2;
    };

    const SkPathOpsBounds& bounds() const {
        return fBounds;
    }

    // OPTIMIZE
    // when the edges are initially walked, they don't automatically get the prior and next
    // edges assigned to positions t=0 and t=1. Doing that would remove the need for this check,
    // and would additionally remove the need for similar checks in condition edges. It would
    // also allow intersection code to assume end of segment intersections (maybe?)
    bool complete() const {
        int count = fTs.count();
        return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1;
    }

    int count() const {
        return fTs.count();
    }

    bool done() const {
        SkASSERT(fDoneSpans <= fTs.count());
        return fDoneSpans == fTs.count();
    }

    bool done(int min) const {
        return fTs[min].fDone;
    }

    bool done(const SkOpAngle* angle) const {
        return done(SkMin32(angle->start(), angle->end()));
    }

    SkDPoint dPtAtT(double mid) const {
        return (*CurveDPointAtT[SkPathOpsVerbToPoints(fVerb)])(fPts, mid);
    }

    SkVector dxdy(int index) const {
        return (*CurveSlopeAtT[SkPathOpsVerbToPoints(fVerb)])(fPts, fTs[index].fT);
    }

    SkScalar dy(int index) const {
        return dxdy(index).fY;
    }

    bool hasMultiples() const {
        return fMultiples;
    }

    bool hasSmall() const {
        return fSmall;
    }

    bool hasTiny() const {
        return fTiny;
    }

    bool intersected() const {
        return fTs.count() > 0;
    }

    bool isCanceled(int tIndex) const {
        return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0;
    }

    bool isConnected(int startIndex, int endIndex) const {
        return fTs[startIndex].fWindSum != SK_MinS32 || fTs[endIndex].fWindSum != SK_MinS32;
    }

    bool isHorizontal() const {
        return fBounds.fTop == fBounds.fBottom;
    }

    bool isVertical() const {
        return fBounds.fLeft == fBounds.fRight;
    }

    bool isVertical(int start, int end) const {
        return (*CurveIsVertical[SkPathOpsVerbToPoints(fVerb)])(fPts, start, end);
    }

    bool operand() const {
        return fOperand;
    }

    int oppSign(const SkOpAngle* angle) const {
        SkASSERT(angle->segment() == this);
        return oppSign(angle->start(), angle->end());
    }

    int oppSign(int startIndex, int endIndex) const {
        int result = startIndex < endIndex ? -fTs[startIndex].fOppValue : fTs[endIndex].fOppValue;
#if DEBUG_WIND_BUMP
        SkDebugf("%s oppSign=%d\n", __FUNCTION__, result);
#endif
        return result;
    }

    int oppSum(int tIndex) const {
        return fTs[tIndex].fOppSum;
    }

    int oppSum(const SkOpAngle* angle) const {
        int lesser = SkMin32(angle->start(), angle->end());
        return fTs[lesser].fOppSum;
    }

    int oppValue(int tIndex) const {
        return fTs[tIndex].fOppValue;
    }

    int oppValue(const SkOpAngle* angle) const {
        int lesser = SkMin32(angle->start(), angle->end());
        return fTs[lesser].fOppValue;
    }

#if DEBUG_VALIDATE
    bool oppXor() const {
        return fOppXor;
    }
#endif

    SkPoint ptAtT(double mid) const {
        return (*CurvePointAtT[SkPathOpsVerbToPoints(fVerb)])(fPts, mid);
    }

    const SkPoint* pts() const {
        return fPts;
    }

    void reset() {
        init(NULL, (SkPath::Verb) -1, false, false);
        fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
        fTs.reset();
    }

    bool reversePoints(const SkPoint& p1, const SkPoint& p2) const;

    void setOppXor(bool isOppXor) {
        fOppXor = isOppXor;
    }

    void setUpWinding(int index, int endIndex, int* maxWinding, int* sumWinding) {
        int deltaSum = spanSign(index, endIndex);
        *maxWinding = *sumWinding;
        *sumWinding -= deltaSum;
    }

    const SkOpSpan& span(int tIndex) const {
        return fTs[tIndex];
    }

    const SkOpAngle* spanToAngle(int tStart, int tEnd) const {
        SkASSERT(tStart != tEnd);
        const SkOpSpan& span = fTs[tStart];
        return tStart < tEnd ? span.fToAngle : span.fFromAngle;
    }

    // FIXME: create some sort of macro or template that avoids casting
    SkOpAngle* spanToAngle(int tStart, int tEnd) {
        const SkOpAngle* cAngle = (const_cast<const SkOpSegment*>(this))->spanToAngle(tStart, tEnd);
        return const_cast<SkOpAngle*>(cAngle);
    }

    int spanSign(const SkOpAngle* angle) const {
        SkASSERT(angle->segment() == this);
        return spanSign(angle->start(), angle->end());
    }

    int spanSign(int startIndex, int endIndex) const {
        int result = startIndex < endIndex ? -fTs[startIndex].fWindValue : fTs[endIndex].fWindValue;
#if DEBUG_WIND_BUMP
        SkDebugf("%s spanSign=%d\n", __FUNCTION__, result);
#endif
        return result;
    }

    double t(int tIndex) const {
        return fTs[tIndex].fT;
    }

    double tAtMid(int start, int end, double mid) const {
        return fTs[start].fT * (1 - mid) + fTs[end].fT * mid;
    }

    void updatePts(const SkPoint pts[]) {
        fPts = pts;
    }

    SkPath::Verb verb() const {
        return fVerb;
    }

    int windSum(int tIndex) const {
        return fTs[tIndex].fWindSum;
    }

    int windValue(int tIndex) const {
        return fTs[tIndex].fWindValue;
    }

#if defined(SK_DEBUG) || DEBUG_WINDING
    SkScalar xAtT(int index) const {
        return xAtT(&fTs[index]);
    }
#endif

#if DEBUG_VALIDATE
    bool _xor() const {  // FIXME: used only by SkOpAngle::debugValidateLoop()
        return fXor;
    }
#endif

    const SkPoint& xyAtT(const SkOpSpan* span) const {
        return span->fPt;
    }

    const SkPoint& xyAtT(int index) const {
        return xyAtT(&fTs[index]);
    }

#if defined(SK_DEBUG) || DEBUG_WINDING
    SkScalar yAtT(int index) const {
        return yAtT(&fTs[index]);
    }
#endif

    const SkOpAngle* activeAngle(int index, int* start, int* end, bool* done,
                                 bool* sortable) const;
    SkPoint activeLeftTop(int* firstT) const;
    bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, SkPathOp op);
    bool activeWinding(int index, int endIndex);
    void addCubic(const SkPoint pts[4], bool operand, bool evenOdd);
    void addCurveTo(int start, int end, SkPathWriter* path, bool active) const;
    void addEndSpan(int endIndex);
    void addLine(const SkPoint pts[2], bool operand, bool evenOdd);
    void addOtherT(int index, double otherT, int otherIndex);
    void addQuad(const SkPoint pts[3], bool operand, bool evenOdd);
    void addSimpleAngle(int endIndex);
    int addSelfT(const SkPoint& pt, double newT);
    void addStartSpan(int endIndex);
    int addT(SkOpSegment* other, const SkPoint& pt, double newT);
    void addTCancel(const SkPoint& startPt, const SkPoint& endPt, SkOpSegment* other);
    bool addTCoincident(const SkPoint& startPt, const SkPoint& endPt, double endT,
                        SkOpSegment* other);
    const SkOpSpan* addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind,
                             const SkPoint& pt);
    const SkOpSpan* addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind,
                             const SkPoint& pt, const SkPoint& oPt);
    void alignMultiples(SkTDArray<AlignedSpan>* aligned);
    bool alignSpan(int index, double thisT, const SkPoint& thisPt);
    void alignSpanState(int start, int end);
    bool betweenTs(int lesser, double testT, int greater) const;
    void blindCancel(const SkCoincidence& coincidence, SkOpSegment* other);
    void blindCoincident(const SkCoincidence& coincidence, SkOpSegment* other);
    bool calcAngles();
    double calcMissingTEnd(const SkOpSegment* ref, double loEnd, double min, double max,
                           double hiEnd, const SkOpSegment* other, int thisEnd);
    double calcMissingTStart(const SkOpSegment* ref, double loEnd, double min, double max,
                             double hiEnd, const SkOpSegment* other, int thisEnd);
    void checkDuplicates();
    bool checkEnds();
    void checkMultiples();
    void checkSmall();
    bool checkSmall(int index) const;
    void checkTiny();
    int computeSum(int startIndex, int endIndex, SkOpAngle::IncludeType includeType);
    bool containsPt(const SkPoint& , int index, int endIndex) const;
    int crossedSpanY(const SkPoint& basePt, SkScalar* bestY, double* hitT, bool* hitSomething,
                     double mid, bool opp, bool current) const;
    bool findCoincidentMatch(const SkOpSpan* span, const SkOpSegment* other, int oStart, int oEnd,
                             int step, SkPoint* startPt, SkPoint* endPt, double* endT) const;
    SkOpSegment* findNextOp(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd,
                            bool* unsortable, SkPathOp op, int xorMiMask, int xorSuMask);
    SkOpSegment* findNextWinding(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd,
                                 bool* unsortable);
    SkOpSegment* findNextXor(int* nextStart, int* nextEnd, bool* unsortable);
    int findExactT(double t, const SkOpSegment* ) const;
    int findOtherT(double t, const SkOpSegment* ) const;
    int findT(double t, const SkPoint& , const SkOpSegment* ) const;
    SkOpSegment* findTop(int* tIndex, int* endIndex, bool* unsortable, bool firstPass);
    void fixOtherTIndex();
    bool inconsistentAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding,
                        const SkOpAngle* angle) const;
    void initWinding(int start, int end, SkOpAngle::IncludeType angleIncludeType);
    bool initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind,
                     SkScalar hitOppDx);
    bool isMissing(double startT, const SkPoint& pt) const;
    bool isTiny(const SkOpAngle* angle) const;
    bool joinCoincidence(SkOpSegment* other, double otherT, const SkPoint& otherPt, int step,
                         bool cancel);
    SkOpSpan* markAndChaseDoneBinary(int index, int endIndex);
    SkOpSpan* markAndChaseDoneUnary(int index, int endIndex);
    bool markAndChaseWinding(const SkOpAngle* angle, int winding, int oppWinding,
                             SkOpSpan** lastPtr);
    SkOpSpan* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding,
                        const SkOpAngle* angle);
    void markDone(int index, int winding);
    void markDoneBinary(int index);
    void markDoneFinal(int index);
    void markDoneUnary(int index);
    bool nextCandidate(int* start, int* end) const;
    int nextSpan(int from, int step) const;
    void pinT(const SkPoint& pt, double* t);
    void setUpWindings(int index, int endIndex, int* sumMiWinding, int* sumSuWinding,
            int* maxWinding, int* sumWinding, int* oppMaxWinding, int* oppSumWinding);
    void sortAngles();
    bool subDivide(int start, int end, SkPoint edge[4]) const;
    bool subDivide(int start, int end, SkDCubic* result) const;
    void undoneSpan(int* start, int* end);
    int updateOppWindingReverse(const SkOpAngle* angle) const;
    int updateWindingReverse(const SkOpAngle* angle) const;
    static bool UseInnerWinding(int outerWinding, int innerWinding);
    static bool UseInnerWindingReverse(int outerWinding, int innerWinding);
    int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar* dx) const;
    int windSum(const SkOpAngle* angle) const;
// available for testing only
#if defined(SK_DEBUG) || !FORCE_RELEASE
    int debugID() const {
        return fID;
    }
#else
    int debugID() const {
        return -1;
    }
#endif
#if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY
    void debugShowActiveSpans() const;
#endif
#if DEBUG_CONCIDENT
    void debugShowTs(const char* prefix) const;
#endif
#if DEBUG_SHOW_WINDING
    int debugShowWindingValues(int slotCount, int ofInterest) const;
#endif
    const SkTDArray<SkOpSpan>& debugSpans() const;
    void debugValidate() const;
    // available to testing only
    const SkOpAngle* debugLastAngle() const;
    void dumpAngles() const;
    void dumpContour(int firstID, int lastID) const;
    void dumpPts() const;
    void dumpSpans() const;

private:
    struct MissingSpan  {
        double fT;
        double fEndT;
        SkOpSegment* fSegment;
        SkOpSegment* fOther;
        double fOtherT;
        SkPoint fPt;
    };

    const SkOpAngle* activeAngleInner(int index, int* start, int* end, bool* done,
                                      bool* sortable) const;
    const SkOpAngle* activeAngleOther(int index, int* start, int* end, bool* done,
                                      bool* sortable) const;
    bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, SkPathOp op,
                  int* sumMiWinding, int* sumSuWinding);
    bool activeWinding(int index, int endIndex, int* sumWinding);
    void addCancelOutsides(const SkPoint& startPt, const SkPoint& endPt, SkOpSegment* other);
    void addCoinOutsides(const SkPoint& startPt, const SkPoint& endPt, SkOpSegment* other);
    SkOpAngle* addSingletonAngleDown(SkOpSegment** otherPtr, SkOpAngle** );
    SkOpAngle* addSingletonAngleUp(SkOpSegment** otherPtr, SkOpAngle** );
    SkOpAngle* addSingletonAngles(int step);
    void alignRange(int lower, int upper, const SkOpSegment* other, int oLower, int oUpper);
    void alignSpan(const SkPoint& newPt, double newT, const SkOpSegment* other, double otherT,
                   const SkOpSegment* other2, SkOpSpan* oSpan, SkTDArray<AlignedSpan>* );
    bool betweenPoints(double midT, const SkPoint& pt1, const SkPoint& pt2) const;
    void bumpCoincidentBlind(bool binary, int index, int last);
    bool bumpCoincidentThis(const SkOpSpan& oTest, bool binary, int* index,
                            SkTArray<SkPoint, true>* outsideTs);
    void bumpCoincidentOBlind(int index, int last);
    bool bumpCoincidentOther(const SkOpSpan& oTest, int* index,
                             SkTArray<SkPoint, true>* outsideTs, const SkPoint& endPt);
    bool bumpSpan(SkOpSpan* span, int windDelta, int oppDelta);
    bool calcLoopSpanCount(const SkOpSpan& thisSpan, int* smallCounts);
    bool checkForSmall(const SkOpSpan* span, const SkPoint& pt, double newT,
                       int* less, int* more) const;
    void checkLinks(const SkOpSpan* ,
                    SkTArray<MissingSpan, true>* missingSpans) const;
    static void CheckOneLink(const SkOpSpan* test, const SkOpSpan* oSpan,
                             const SkOpSpan* oFirst, const SkOpSpan* oLast,
                             const SkOpSpan** missingPtr,
                             SkTArray<MissingSpan, true>* missingSpans);
    int checkSetAngle(int tIndex) const;
    void checkSmallCoincidence(const SkOpSpan& span, SkTArray<MissingSpan, true>* );
    bool coincidentSmall(const SkPoint& pt, double t, const SkOpSegment* other) const;
    bool clockwise(int tStart, int tEnd, bool* swap) const;
    static void ComputeOneSum(const SkOpAngle* baseAngle, SkOpAngle* nextAngle,
                              SkOpAngle::IncludeType );
    static void ComputeOneSumReverse(const SkOpAngle* baseAngle, SkOpAngle* nextAngle,
                                     SkOpAngle::IncludeType );
    bool containsT(double t, const SkOpSegment* other, double otherT) const;
    bool decrementSpan(SkOpSpan* span);
    int findEndSpan(int endIndex) const;
    int findStartSpan(int startIndex) const;
    int firstActive(int tIndex) const;
    const SkOpSpan& firstSpan(const SkOpSpan& thisSpan) const;
    void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd);
    bool inCoincidentSpan(double t, const SkOpSegment* other) const;
    bool inconsistentWinding(const SkOpAngle* , int maxWinding, int oppMaxWinding) const;
    bool inconsistentWinding(int min, int maxWinding, int oppMaxWinding) const;
    bool inconsistentWinding(const char* funName, int tIndex, int winding, int oppWinding) const;
    bool inLoop(const SkOpAngle* baseAngle, int spanCount, int* indexPtr) const;
#if OLD_CHASE
    bool isSimple(int end) const;
#else
    SkOpSegment* isSimple(int* end, int* step);
#endif
    bool isTiny(int index) const;
    const SkOpSpan& lastSpan(const SkOpSpan& thisSpan) const;
    void matchWindingValue(int tIndex, double t, bool borrowWind);
    SkOpSpan* markAndChaseDone(int index, int endIndex, int winding);
    SkOpSpan* markAndChaseDoneBinary(const SkOpAngle* angle, int winding, int oppWinding);
    bool markAndChaseWinding(const SkOpAngle* angle, int winding, SkOpSpan** lastPtr);
    bool markAndChaseWinding(int index, int endIndex, int winding, SkOpSpan** lastPtr);
    bool markAndChaseWinding(int index, int endIndex, int winding, int oppWinding,
                             SkOpSpan** lastPtr);
    SkOpSpan* markAngle(int maxWinding, int sumWinding, const SkOpAngle* angle);
    void markDoneBinary(int index, int winding, int oppWinding);
    SkOpSpan* markAndChaseDoneUnary(const SkOpAngle* angle, int winding);
    void markOneDone(const char* funName, int tIndex, int winding);
    void markOneDoneBinary(const char* funName, int tIndex);
    void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding);
    void markOneDoneFinal(const char* funName, int tIndex);
    void markOneDoneUnary(const char* funName, int tIndex);
    bool markOneWinding(const char* funName, int tIndex, int winding, SkOpSpan** lastPtr);
    bool markOneWinding(const char* funName, int tIndex, int winding, int oppWinding,
                        SkOpSpan** lastPtr);
    bool markWinding(int index, int winding);
    bool markWinding(int index, int winding, int oppWinding);
    bool monotonicInY(int tStart, int tEnd) const;

    bool multipleEnds() const { return fTs[count() - 2].fT == 1; }
    bool multipleStarts() const { return fTs[1].fT == 0; }

    SkOpSegment* nextChase(int* index, int* step, int* min, SkOpSpan** last) const;
    int nextExactSpan(int from, int step) const;
    void resetSpanFlags();
    bool serpentine(int tStart, int tEnd) const;
    void setCoincidentRange(const SkPoint& startPt, const SkPoint& endPt,  SkOpSegment* other);
    void setFromAngle(int endIndex, SkOpAngle* );
    void setSpanFlags(const SkPoint& pt, double newT, SkOpSpan* span);
    void setToAngle(int endIndex, SkOpAngle* );
    void setUpWindings(int index, int endIndex, int* sumMiWinding,
            int* maxWinding, int* sumWinding);
    void subDivideBounds(int start, int end, SkPathOpsBounds* bounds) const;
    static void TrackOutsidePair(SkTArray<SkPoint, true>* outsideTs, const SkPoint& endPt,
            const SkPoint& startPt);
    static void TrackOutside(SkTArray<SkPoint, true>* outsideTs, const SkPoint& startPt);
    int updateOppWinding(int index, int endIndex) const;
    int updateOppWinding(const SkOpAngle* angle) const;
    int updateWinding(int index, int endIndex) const;
    int updateWinding(const SkOpAngle* angle) const;
    int updateWindingReverse(int index, int endIndex) const;
    SkOpSpan* verifyOneWinding(const char* funName, int tIndex);
    SkOpSpan* verifyOneWindingU(const char* funName, int tIndex);

    SkScalar xAtT(const SkOpSpan* span) const {
        return xyAtT(span).fX;
    }

    SkScalar yAtT(const SkOpSpan* span) const {
        return xyAtT(span).fY;
    }

    void zeroSpan(SkOpSpan* span);

#if DEBUG_SWAP_TOP
    bool controlsContainedByEnds(int tStart, int tEnd) const;
#endif
    void debugAddAngle(int start, int end);
#if DEBUG_CONCIDENT
    void debugAddTPair(double t, const SkOpSegment& other, double otherT) const;
#endif
#if DEBUG_ANGLE
    void debugCheckPointsEqualish(int tStart, int tEnd) const;
#endif
#if DEBUG_SWAP_TOP
    int debugInflections(int index, int endIndex) const;
#endif
#if DEBUG_MARK_DONE || DEBUG_UNSORTABLE
    void debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding);
    void debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding, int oppWinding);
#endif
#if DEBUG_WINDING
    static char as_digit(int value) {
        return value < 0 ? '?' : value <= 9 ? '0' + value : '+';
    }
#endif
    // available to testing only
    void debugConstruct();
    void debugConstructCubic(SkPoint shortQuad[4]);
    void debugConstructLine(SkPoint shortQuad[2]);
    void debugConstructQuad(SkPoint shortQuad[3]);
    void debugReset();
    void dumpDPts() const;
    void dumpHexPts() const;
    void dumpSpan(int index) const;

    const SkPoint* fPts;
    SkPathOpsBounds fBounds;
    // FIXME: can't convert to SkTArray because it uses insert
    SkTDArray<SkOpSpan> fTs;  // 2+ (always includes t=0 t=1) -- at least (number of spans) + 1
    SkOpAngleSet fAngles;  // empty or 2+ -- (number of non-zero spans) * 2
    // OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value
    int fDoneSpans;  // quick check that segment is finished
    // OPTIMIZATION: force the following to be byte-sized
    SkPath::Verb fVerb;
    bool fLoop;   // set if cubic intersects itself
    bool fMultiples;  // set if curve intersects multiple other curves at one interior point
    bool fOperand;
    bool fXor;  // set if original contour had even-odd fill
    bool fOppXor;  // set if opposite operand had even-odd fill
    bool fSmall;  // set if some span is small
    bool fTiny;  // set if some span is tiny
#if defined(SK_DEBUG) || !FORCE_RELEASE
    int fID;
#endif

    friend class PathOpsSegmentTester;
};

#endif