aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkOpEdgeBuilder.cpp
blob: 95152a7ffa3dfec8b5833c73dcf68afc8fe36496 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkGeometry.h"
#include "SkOpEdgeBuilder.h"
#include "SkReduceOrder.h"

void SkOpEdgeBuilder::init() {
    fCurrentContour = fContoursHead;
    fOperand = false;
    fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
            : kWinding_PathOpsMask;
    fUnparseable = false;
    fSecondHalf = preFetch();
}

void SkOpEdgeBuilder::addOperand(const SkPath& path) {
    SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb);
    fPathVerbs.pop();
    fPath = &path;
    fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
            : kWinding_PathOpsMask;
    preFetch();
}

int SkOpEdgeBuilder::count() const {
    SkOpContour* contour = fContoursHead;
    int count = 0;
    while (contour) {
        count += contour->count() > 0;
        contour = contour->next();
    }
    return count;
}

bool SkOpEdgeBuilder::finish() {
    fOperand = false;
    if (fUnparseable || !walk()) {
        return false;
    }
    complete();
    if (fCurrentContour && !fCurrentContour->count()) {
        fContoursHead->remove(fCurrentContour);
    }
    return true;
}

void SkOpEdgeBuilder::closeContour(const SkPoint& curveEnd, const SkPoint& curveStart) {
    if (!SkDPoint::ApproximatelyEqual(curveEnd, curveStart)) {
        *fPathVerbs.append() = SkPath::kLine_Verb;
        *fPathPts.append() = curveStart;
    } else {
        fPathPts[fPathPts.count() - 1] = curveStart;
    }
    *fPathVerbs.append() = SkPath::kClose_Verb;
}

// very tiny points cause numerical instability : don't allow them
static void force_small_to_zero(SkPoint* pt) {
    if (SkScalarAbs(pt->fX) < FLT_EPSILON_ORDERABLE_ERR) {
        pt->fX = 0;
    }
    if (SkScalarAbs(pt->fY) < FLT_EPSILON_ORDERABLE_ERR) {
        pt->fY = 0;
    }
}

int SkOpEdgeBuilder::preFetch() {
    if (!fPath->isFinite()) {
        fUnparseable = true;
        return 0;
    }
    SkPath::RawIter iter(*fPath);
    SkPoint curveStart;
    SkPoint curve[4];
    SkPoint pts[4];
    SkPath::Verb verb;
    bool lastCurve = false;
    do {
        verb = iter.next(pts);
        switch (verb) {
            case SkPath::kMove_Verb:
                if (!fAllowOpenContours && lastCurve) {
                    closeContour(curve[0], curveStart);
                }
                *fPathVerbs.append() = verb;
                force_small_to_zero(&pts[0]);
                *fPathPts.append() = pts[0];
                curveStart = curve[0] = pts[0];
                lastCurve = false;
                continue;
            case SkPath::kLine_Verb:
                force_small_to_zero(&pts[1]);
                if (SkDPoint::ApproximatelyEqual(curve[0], pts[1])) {
                    uint8_t lastVerb = fPathVerbs.top();
                    if (lastVerb != SkPath::kLine_Verb && lastVerb != SkPath::kMove_Verb) {
                        fPathPts.top() = pts[1];
                    }
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kQuad_Verb:
                force_small_to_zero(&pts[1]);
                force_small_to_zero(&pts[2]);
                curve[1] = pts[1];
                curve[2] = pts[2];
                verb = SkReduceOrder::Quad(curve, pts);
                if (verb == SkPath::kMove_Verb) {
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kConic_Verb:
                force_small_to_zero(&pts[1]);
                force_small_to_zero(&pts[2]);
                curve[1] = pts[1];
                curve[2] = pts[2];
                verb = SkReduceOrder::Conic(curve, iter.conicWeight(), pts);
                if (verb == SkPath::kMove_Verb) {
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kCubic_Verb:
                force_small_to_zero(&pts[1]);
                force_small_to_zero(&pts[2]);
                force_small_to_zero(&pts[3]);
                curve[1] = pts[1];
                curve[2] = pts[2];
                curve[3] = pts[3];
                verb = SkReduceOrder::Cubic(curve, pts);
                if (verb == SkPath::kMove_Verb) {
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kClose_Verb:
                closeContour(curve[0], curveStart);
                lastCurve = false;
                continue;
            case SkPath::kDone_Verb:
                continue;
        }
        *fPathVerbs.append() = verb;
        int ptCount = SkPathOpsVerbToPoints(verb);
        fPathPts.append(ptCount, &pts[1]);
        if (verb == SkPath::kConic_Verb) {
            *fWeights.append() = iter.conicWeight();
        }
        curve[0] = pts[ptCount];
        lastCurve = true;
    } while (verb != SkPath::kDone_Verb);
    if (!fAllowOpenContours && lastCurve) {
        closeContour(curve[0], curveStart);
    }
    *fPathVerbs.append() = SkPath::kDone_Verb;
    return fPathVerbs.count() - 1;
}

bool SkOpEdgeBuilder::close() {
    complete();
    return true;
}

bool SkOpEdgeBuilder::walk() {
    uint8_t* verbPtr = fPathVerbs.begin();
    uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf];
    SkPoint* pointsPtr = fPathPts.begin() - 1;
    SkScalar* weightPtr = fWeights.begin();
    SkPath::Verb verb;
    while ((verb = (SkPath::Verb) *verbPtr) != SkPath::kDone_Verb) {
        if (verbPtr == endOfFirstHalf) {
            fOperand = true;
        }
        verbPtr++;
        switch (verb) {
            case SkPath::kMove_Verb:
                if (fCurrentContour && fCurrentContour->count()) {
                    if (fAllowOpenContours) {
                        complete();
                    } else if (!close()) {
                        return false;
                    }
                }
                if (!fCurrentContour) {
                    fCurrentContour = fContoursHead->appendContour();
                }
                fCurrentContour->init(fGlobalState, fOperand,
                    fXorMask[fOperand] == kEvenOdd_PathOpsMask);
                pointsPtr += 1;
                continue;
            case SkPath::kLine_Verb:
                fCurrentContour->addLine(pointsPtr);
                break;
            case SkPath::kQuad_Verb:
                fCurrentContour->addQuad(pointsPtr);
                break;
            case SkPath::kConic_Verb:
                fCurrentContour->addConic(pointsPtr, *weightPtr++);
                break;
            case SkPath::kCubic_Verb: {
                // Split complex cubics (such as self-intersecting curves or
                // ones with difficult curvature) in two before proceeding.
                // This can be required for intersection to succeed.
                SkScalar splitT;
                if (SkDCubic::ComplexBreak(pointsPtr, &splitT)) {
                    SkPoint cubicPair[7];
                    SkChopCubicAt(pointsPtr, cubicPair, splitT);
                    if (!SkScalarsAreFinite(&cubicPair[0].fX, SK_ARRAY_COUNT(cubicPair) * 2)) {
                        return false;
                    }
                    SkPoint cStorage[2][4];
                    SkPath::Verb v1 = SkReduceOrder::Cubic(&cubicPair[0], cStorage[0]);
                    SkPath::Verb v2 = SkReduceOrder::Cubic(&cubicPair[3], cStorage[1]);
                    if (v1 != SkPath::kMove_Verb && v2 != SkPath::kMove_Verb) {
                        SkPoint* curve1 = v1 == SkPath::kCubic_Verb ? &cubicPair[0] : cStorage[0];
                        SkPoint* curve2 = v2 == SkPath::kCubic_Verb ? &cubicPair[3] : cStorage[1];
                        for (int index = 0; index < SkPathOpsVerbToPoints(v1); ++index) {
                            force_small_to_zero(&curve1[index]);
                        }
                        for (int index = 0; index < SkPathOpsVerbToPoints(v2); ++index) {
                            force_small_to_zero(&curve2[index]);
                        }
                        fCurrentContour->addCurve(v1, curve1);
                        fCurrentContour->addCurve(v2, curve2);
                    } else {
                        fCurrentContour->addCubic(pointsPtr);
                    }
                } else {
                    fCurrentContour->addCubic(pointsPtr);
                }
                } break;
            case SkPath::kClose_Verb:
                SkASSERT(fCurrentContour);
                if (!close()) {
                    return false;
                }
                continue;
            default:
                SkDEBUGFAIL("bad verb");
                return false;
        }
        SkASSERT(fCurrentContour);
        fCurrentContour->debugValidate();
        pointsPtr += SkPathOpsVerbToPoints(verb);
    }
   if (fCurrentContour && fCurrentContour->count() &&!fAllowOpenContours && !close()) {
       return false;
   }
   return true;
}