1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGeometry.h"
#include "SkOpEdgeBuilder.h"
#include "SkReduceOrder.h"
void SkOpEdgeBuilder::init() {
fCurrentContour = NULL;
fOperand = false;
fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
: kWinding_PathOpsMask;
fUnparseable = false;
fSecondHalf = preFetch();
}
void SkOpEdgeBuilder::addOperand(const SkPath& path) {
SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb);
fPathVerbs.pop_back();
fPath = &path;
fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
: kWinding_PathOpsMask;
preFetch();
}
bool SkOpEdgeBuilder::finish() {
if (fUnparseable || !walk()) {
return false;
}
complete();
if (fCurrentContour && !fCurrentContour->segments().count()) {
fContours.pop_back();
}
return true;
}
void SkOpEdgeBuilder::closeContour(const SkPoint& curveEnd, const SkPoint& curveStart) {
if (!SkDPoint::ApproximatelyEqual(curveEnd, curveStart)) {
fPathVerbs.push_back(SkPath::kLine_Verb);
fPathPts.push_back_n(1, &curveStart);
} else {
fPathPts[fPathPts.count() - 1] = curveStart;
}
fPathVerbs.push_back(SkPath::kClose_Verb);
}
int SkOpEdgeBuilder::preFetch() {
if (!fPath->isFinite()) {
fUnparseable = true;
return 0;
}
SkAutoConicToQuads quadder;
const SkScalar quadderTol = SK_Scalar1 / 16;
SkPath::RawIter iter(*fPath);
SkPoint curveStart;
SkPoint curve[4];
SkPoint pts[4];
SkPath::Verb verb;
bool lastCurve = false;
do {
verb = iter.next(pts);
switch (verb) {
case SkPath::kMove_Verb:
if (!fAllowOpenContours && lastCurve) {
closeContour(curve[0], curveStart);
}
fPathVerbs.push_back(verb);
fPathPts.push_back(pts[0]);
curveStart = curve[0] = pts[0];
lastCurve = false;
continue;
case SkPath::kLine_Verb:
if (SkDPoint::ApproximatelyEqual(curve[0], pts[1])) {
uint8_t lastVerb = fPathVerbs.back();
if (lastVerb != SkPath::kLine_Verb && lastVerb != SkPath::kMove_Verb) {
fPathPts.back() = pts[1];
}
continue; // skip degenerate points
}
break;
case SkPath::kQuad_Verb:
curve[1] = pts[1];
curve[2] = pts[2];
verb = SkReduceOrder::Quad(curve, pts);
if (verb == SkPath::kMove_Verb) {
continue; // skip degenerate points
}
break;
case SkPath::kConic_Verb: {
const SkPoint* quadPts = quadder.computeQuads(pts, iter.conicWeight(),
quadderTol);
const int nQuads = quadder.countQuads();
for (int i = 0; i < nQuads; ++i) {
fPathVerbs.push_back(SkPath::kQuad_Verb);
}
fPathPts.push_back_n(nQuads * 2, quadPts);
curve[0] = quadPts[nQuads * 2 - 1];
lastCurve = true;
}
continue;
case SkPath::kCubic_Verb:
curve[1] = pts[1];
curve[2] = pts[2];
curve[3] = pts[3];
verb = SkReduceOrder::Cubic(curve, pts);
if (verb == SkPath::kMove_Verb) {
continue; // skip degenerate points
}
break;
case SkPath::kClose_Verb:
closeContour(curve[0], curveStart);
lastCurve = false;
continue;
case SkPath::kDone_Verb:
continue;
}
fPathVerbs.push_back(verb);
int ptCount = SkPathOpsVerbToPoints(verb);
fPathPts.push_back_n(ptCount, &pts[1]);
curve[0] = pts[ptCount];
lastCurve = true;
} while (verb != SkPath::kDone_Verb);
if (!fAllowOpenContours && lastCurve) {
closeContour(curve[0], curveStart);
}
fPathVerbs.push_back(SkPath::kDone_Verb);
return fPathVerbs.count() - 1;
}
bool SkOpEdgeBuilder::close() {
complete();
return true;
}
bool SkOpEdgeBuilder::walk() {
uint8_t* verbPtr = fPathVerbs.begin();
uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf];
const SkPoint* pointsPtr = fPathPts.begin() - 1;
SkPath::Verb verb;
while ((verb = (SkPath::Verb) *verbPtr) != SkPath::kDone_Verb) {
if (verbPtr == endOfFirstHalf) {
fOperand = true;
}
verbPtr++;
switch (verb) {
case SkPath::kMove_Verb:
if (fCurrentContour) {
if (fAllowOpenContours) {
complete();
} else if (!close()) {
return false;
}
}
if (!fCurrentContour) {
fCurrentContour = fContours.push_back_n(1);
fCurrentContour->setOperand(fOperand);
fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_PathOpsMask);
}
pointsPtr += 1;
continue;
case SkPath::kLine_Verb:
fCurrentContour->addLine(pointsPtr);
break;
case SkPath::kQuad_Verb:
fCurrentContour->addQuad(pointsPtr);
break;
case SkPath::kCubic_Verb:
fCurrentContour->addCubic(pointsPtr);
break;
case SkPath::kClose_Verb:
SkASSERT(fCurrentContour);
if (!close()) {
return false;
}
continue;
default:
SkDEBUGFAIL("bad verb");
return false;
}
pointsPtr += SkPathOpsVerbToPoints(verb);
SkASSERT(fCurrentContour);
}
if (fCurrentContour && !fAllowOpenContours && !close()) {
return false;
}
return true;
}
|