aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkOpEdgeBuilder.cpp
blob: 363933e0c5f7c1f9e030dd2ed80fdebe006402ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkGeometry.h"
#include "SkOpEdgeBuilder.h"
#include "SkReduceOrder.h"

void SkOpEdgeBuilder::init() {
    fOperand = false;
    fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
            : kWinding_PathOpsMask;
    fUnparseable = false;
    fSecondHalf = preFetch();
}

// very tiny points cause numerical instability : don't allow them
static void force_small_to_zero(SkPoint* pt) {
    if (SkScalarAbs(pt->fX) < FLT_EPSILON_ORDERABLE_ERR) {
        pt->fX = 0;
    }
    if (SkScalarAbs(pt->fY) < FLT_EPSILON_ORDERABLE_ERR) {
        pt->fY = 0;
    }
}

static bool can_add_curve(SkPath::Verb verb, SkPoint* curve) {
    if (SkPath::kMove_Verb == verb) {
        return false;
    }
    for (int index = 0; index <= SkPathOpsVerbToPoints(verb); ++index) {
        force_small_to_zero(&curve[index]);
    }
    return SkPath::kLine_Verb != verb || !SkDPoint::ApproximatelyEqual(curve[0], curve[1]);
}

void SkOpEdgeBuilder::addOperand(const SkPath& path) {
    SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb);
    fPathVerbs.pop();
    fPath = &path;
    fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
            : kWinding_PathOpsMask;
    preFetch();
}

bool SkOpEdgeBuilder::finish() {
    fOperand = false;
    if (fUnparseable || !walk()) {
        return false;
    }
    complete();
    SkOpContour* contour = fContourBuilder.contour();
    if (contour && !contour->count()) {
        fContoursHead->remove(contour);
    }
    return true;
}

void SkOpEdgeBuilder::closeContour(const SkPoint& curveEnd, const SkPoint& curveStart) {
    if (!SkDPoint::ApproximatelyEqual(curveEnd, curveStart)) {
        *fPathVerbs.append() = SkPath::kLine_Verb;
        *fPathPts.append() = curveStart;
    } else {
        int verbCount = fPathVerbs.count();
        int ptsCount = fPathPts.count();
        if (SkPath::kLine_Verb == fPathVerbs[verbCount - 1]
                && fPathPts[ptsCount - 2] == curveStart) {
            fPathVerbs.pop();
            fPathPts.pop();
        } else {
            fPathPts[ptsCount - 1] = curveStart;
        }
    }
    *fPathVerbs.append() = SkPath::kClose_Verb;
}

int SkOpEdgeBuilder::preFetch() {
    if (!fPath->isFinite()) {
        fUnparseable = true;
        return 0;
    }
    SkPath::RawIter iter(*fPath);
    SkPoint curveStart;
    SkPoint curve[4];
    SkPoint pts[4];
    SkPath::Verb verb;
    bool lastCurve = false;
    do {
        verb = iter.next(pts);
        switch (verb) {
            case SkPath::kMove_Verb:
                if (!fAllowOpenContours && lastCurve) {
                    closeContour(curve[0], curveStart);
                }
                *fPathVerbs.append() = verb;
                force_small_to_zero(&pts[0]);
                *fPathPts.append() = pts[0];
                curveStart = curve[0] = pts[0];
                lastCurve = false;
                continue;
            case SkPath::kLine_Verb:
                force_small_to_zero(&pts[1]);
                if (SkDPoint::ApproximatelyEqual(curve[0], pts[1])) {
                    uint8_t lastVerb = fPathVerbs.top();
                    if (lastVerb != SkPath::kLine_Verb && lastVerb != SkPath::kMove_Verb) {
                        fPathPts.top() = curve[0] = pts[1];
                    }
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kQuad_Verb:
                force_small_to_zero(&pts[1]);
                force_small_to_zero(&pts[2]);
                curve[1] = pts[1];
                curve[2] = pts[2];
                verb = SkReduceOrder::Quad(curve, pts);
                if (verb == SkPath::kMove_Verb) {
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kConic_Verb:
                force_small_to_zero(&pts[1]);
                force_small_to_zero(&pts[2]);
                curve[1] = pts[1];
                curve[2] = pts[2];
                verb = SkReduceOrder::Quad(curve, pts);
                if (SkPath::kQuad_Verb == verb && 1 != iter.conicWeight()) {
                  verb = SkPath::kConic_Verb;
                } else if (verb == SkPath::kMove_Verb) {
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kCubic_Verb:
                force_small_to_zero(&pts[1]);
                force_small_to_zero(&pts[2]);
                force_small_to_zero(&pts[3]);
                curve[1] = pts[1];
                curve[2] = pts[2];
                curve[3] = pts[3];
                verb = SkReduceOrder::Cubic(curve, pts);
                if (verb == SkPath::kMove_Verb) {
                    continue;  // skip degenerate points
                }
                break;
            case SkPath::kClose_Verb:
                closeContour(curve[0], curveStart);
                lastCurve = false;
                continue;
            case SkPath::kDone_Verb:
                continue;
        }
        *fPathVerbs.append() = verb;
        int ptCount = SkPathOpsVerbToPoints(verb);
        fPathPts.append(ptCount, &pts[1]);
        if (verb == SkPath::kConic_Verb) {
            *fWeights.append() = iter.conicWeight();
        }
        curve[0] = pts[ptCount];
        lastCurve = true;
    } while (verb != SkPath::kDone_Verb);
    if (!fAllowOpenContours && lastCurve) {
        closeContour(curve[0], curveStart);
    }
    *fPathVerbs.append() = SkPath::kDone_Verb;
    return fPathVerbs.count() - 1;
}

bool SkOpEdgeBuilder::close() {
    complete();
    return true;
}

bool SkOpEdgeBuilder::walk() {
    uint8_t* verbPtr = fPathVerbs.begin();
    uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf];
    SkPoint* pointsPtr = fPathPts.begin();
    SkScalar* weightPtr = fWeights.begin();
    SkPath::Verb verb;
    SkOpContour* contour = fContourBuilder.contour();
    int moveToPtrBump = 0;
    while ((verb = (SkPath::Verb) *verbPtr) != SkPath::kDone_Verb) {
        if (verbPtr == endOfFirstHalf) {
            fOperand = true;
        }
        verbPtr++;
        switch (verb) {
            case SkPath::kMove_Verb:
                if (contour && contour->count()) {
                    if (fAllowOpenContours) {
                        complete();
                    } else if (!close()) {
                        return false;
                    }
                }
                if (!contour) {
                    fContourBuilder.setContour(contour = fContoursHead->appendContour());
                }
                contour->init(fGlobalState, fOperand,
                    fXorMask[fOperand] == kEvenOdd_PathOpsMask);
                pointsPtr += moveToPtrBump;
                moveToPtrBump = 1;
                continue;
            case SkPath::kLine_Verb:
                fContourBuilder.addLine(pointsPtr);
                break;
            case SkPath::kQuad_Verb:
                {
                    SkVector v1 = pointsPtr[1] - pointsPtr[0];
                    SkVector v2 = pointsPtr[2] - pointsPtr[1];
                    if (v1.dot(v2) < 0) {
                        SkPoint pair[5];
                        if (SkChopQuadAtMaxCurvature(pointsPtr, pair) == 1) {
                            goto addOneQuad;
                        }
                        if (!SkScalarsAreFinite(&pair[0].fX, SK_ARRAY_COUNT(pair) * 2)) {
                            return false;
                        }
                        for (unsigned index = 0; index < SK_ARRAY_COUNT(pair); ++index) {
                            force_small_to_zero(&pair[index]);
                        }
                        SkPoint cStorage[2][2];
                        SkPath::Verb v1 = SkReduceOrder::Quad(&pair[0], cStorage[0]);
                        SkPath::Verb v2 = SkReduceOrder::Quad(&pair[2], cStorage[1]);
                        SkPoint* curve1 = v1 != SkPath::kLine_Verb ? &pair[0] : cStorage[0];
                        SkPoint* curve2 = v2 != SkPath::kLine_Verb ? &pair[2] : cStorage[1];
                        if (can_add_curve(v1, curve1) && can_add_curve(v2, curve2)) {
                            fContourBuilder.addCurve(v1, curve1);
                            fContourBuilder.addCurve(v2, curve2);
                            break;
                        }
                    }
                }
            addOneQuad:
                fContourBuilder.addQuad(pointsPtr);
                break;
            case SkPath::kConic_Verb: {
                SkVector v1 = pointsPtr[1] - pointsPtr[0];
                SkVector v2 = pointsPtr[2] - pointsPtr[1];
                SkScalar weight = *weightPtr++;
                if (v1.dot(v2) < 0) {
                    // FIXME: max curvature for conics hasn't been implemented; use placeholder
                    SkScalar maxCurvature = SkFindQuadMaxCurvature(pointsPtr);
                    if (maxCurvature > 0) {
                        SkConic conic(pointsPtr, weight);
                        SkConic pair[2];
                        if (!conic.chopAt(maxCurvature, pair)) {
                            // if result can't be computed, use original
                            fContourBuilder.addConic(pointsPtr, weight);
                            break;
                        }
                        SkPoint cStorage[2][3];
                        SkPath::Verb v1 = SkReduceOrder::Conic(pair[0], cStorage[0]);
                        SkPath::Verb v2 = SkReduceOrder::Conic(pair[1], cStorage[1]);
                        SkPoint* curve1 = v1 != SkPath::kLine_Verb ? pair[0].fPts : cStorage[0];
                        SkPoint* curve2 = v2 != SkPath::kLine_Verb ? pair[1].fPts : cStorage[1];
                        if (can_add_curve(v1, curve1) && can_add_curve(v2, curve2)) {
                            fContourBuilder.addCurve(v1, curve1, pair[0].fW);
                            fContourBuilder.addCurve(v2, curve2, pair[1].fW);
                            break;
                        }
                    }
                }
                fContourBuilder.addConic(pointsPtr, weight);
                } break;
            case SkPath::kCubic_Verb:
                {
                    // Split complex cubics (such as self-intersecting curves or
                    // ones with difficult curvature) in two before proceeding.
                    // This can be required for intersection to succeed.
                    SkScalar splitT[3];
                    int breaks = SkDCubic::ComplexBreak(pointsPtr, splitT);
                    if (!breaks) {
                        fContourBuilder.addCubic(pointsPtr);
                        break;
                    }
                    SkASSERT(breaks <= (int) SK_ARRAY_COUNT(splitT));
                    struct Splitsville {
                        double fT[2];
                        SkPoint fPts[4];
                        SkPoint fReduced[4];
                        SkPath::Verb fVerb;
                        bool fCanAdd;
                    } splits[4];
                    SkASSERT(SK_ARRAY_COUNT(splits) == SK_ARRAY_COUNT(splitT) + 1);
                    SkTQSort(splitT, &splitT[breaks - 1]);
                    for (int index = 0; index <= breaks; ++index) {
                        Splitsville* split = &splits[index];
                        split->fT[0] = index ? splitT[index - 1] : 0;
                        split->fT[1] = index < breaks ? splitT[index] : 1;
                        SkDCubic part = SkDCubic::SubDivide(pointsPtr, split->fT[0], split->fT[1]);
                        if (!part.toFloatPoints(split->fPts)) {
                            return false;
                        }
                        split->fVerb = SkReduceOrder::Cubic(split->fPts, split->fReduced);
                        SkPoint* curve = SkPath::kCubic_Verb == verb
                                ? split->fPts : split->fReduced;
                        split->fCanAdd = can_add_curve(split->fVerb, curve);
                    }
                    for (int index = 0; index <= breaks; ++index) {
                        Splitsville* split = &splits[index];
                        if (!split->fCanAdd) {
                            continue;
                        }
                        int prior = index;
                        while (prior > 0 && !splits[prior - 1].fCanAdd) {
                            --prior;
                        }
                        if (prior < index) {
                            split->fT[0] = splits[prior].fT[0];
                            split->fPts[0] = splits[prior].fPts[0];
                        }
                        int next = index;
                        int breakLimit = SkTMin(breaks, (int) SK_ARRAY_COUNT(splits) - 1);
                        while (next < breakLimit && !splits[next + 1].fCanAdd) {
                            ++next;
                        }
                        if (next > index) {
                            split->fT[1] = splits[next].fT[1];
                            split->fPts[3] = splits[next].fPts[3];
                        }
                        if (prior < index || next > index) {
                            split->fVerb = SkReduceOrder::Cubic(split->fPts, split->fReduced);
                        }
                        SkPoint* curve = SkPath::kCubic_Verb == split->fVerb
                                ? split->fPts : split->fReduced;
                        if (!can_add_curve(split->fVerb, curve)) {
                            return false;
                        }
                        fContourBuilder.addCurve(split->fVerb, curve);
                    }
                }
                break;
            case SkPath::kClose_Verb:
                SkASSERT(contour);
                if (!close()) {
                    return false;
                }
                contour = nullptr;
                continue;
            default:
                SkDEBUGFAIL("bad verb");
                return false;
        }
        SkASSERT(contour);
        if (contour->count()) {
            contour->debugValidate();
        }
        pointsPtr += SkPathOpsVerbToPoints(verb);
    }
    fContourBuilder.flush();
    if (contour && contour->count() &&!fAllowOpenContours && !close()) {
        return false;
    }
    return true;
}