blob: 57e3b41912def5a0279106b5c9ccc3dfd48f137f (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkOpEdgeBuilder.h"
#include "SkReduceOrder.h"
void SkOpEdgeBuilder::init() {
fCurrentContour = NULL;
fOperand = false;
fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
: kWinding_PathOpsMask;
#if DEBUG_DUMP
gContourID = 0;
gSegmentID = 0;
#endif
fUnparseable = false;
fSecondHalf = preFetch();
}
void SkOpEdgeBuilder::addOperand(const SkPath& path) {
SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb);
fPathVerbs.pop();
fPath = &path;
fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
: kWinding_PathOpsMask;
preFetch();
}
bool SkOpEdgeBuilder::finish() {
if (fUnparseable || !walk()) {
return false;
}
complete();
if (fCurrentContour && !fCurrentContour->segments().count()) {
fContours.pop_back();
}
// correct pointers in contours since fReducePts may have moved as it grew
int cIndex = 0;
int extraCount = fExtra.count();
SkASSERT(extraCount == 0 || fExtra[0] == -1);
int eIndex = 0;
int rIndex = 0;
while (++eIndex < extraCount) {
int offset = fExtra[eIndex];
if (offset < 0) {
++cIndex;
continue;
}
fCurrentContour = &fContours[cIndex];
rIndex += fCurrentContour->updateSegment(offset - 1,
&fReducePts[rIndex]);
}
fExtra.reset(); // we're done with this
return true;
}
// Note that copying the points here avoids copying the resulting path later.
// To allow Op() to take one of the input paths as an output parameter, either the source data
// must be copied (as implemented below) or the result must be copied.
// OPTIMIZATION: This copies both sets of input points every time. If the input data was read
// directly, the output path would only need to be copied if it was also one of the input paths.
int SkOpEdgeBuilder::preFetch() {
if (!fPath->isFinite()) {
fUnparseable = true;
return 0;
}
SkPath::RawIter iter(*fPath);
SkPoint pts[4];
SkPath::Verb verb;
do {
verb = iter.next(pts);
*fPathVerbs.append() = verb;
if (verb == SkPath::kMove_Verb) {
*fPathPts.append() = pts[0];
} else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
fPathPts.append(verb, &pts[1]);
}
} while (verb != SkPath::kDone_Verb);
return fPathVerbs.count() - 1;
}
bool SkOpEdgeBuilder::close() {
if (fFinalCurveStart && fFinalCurveEnd && *fFinalCurveStart != *fFinalCurveEnd) {
*fReducePts.append() = *fFinalCurveStart;
*fReducePts.append() = *fFinalCurveEnd;
const SkPoint* lineStart = fReducePts.end() - 2;
*fExtra.append() = fCurrentContour->addLine(lineStart);
}
complete();
return true;
}
bool SkOpEdgeBuilder::walk() {
SkPath::Verb reducedVerb;
uint8_t* verbPtr = fPathVerbs.begin();
uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf];
const SkPoint* pointsPtr = fPathPts.begin();
SkPath::Verb verb;
fFinalCurveStart = NULL;
fFinalCurveEnd = NULL;
while ((verb = (SkPath::Verb) *verbPtr) != SkPath::kDone_Verb) {
if (verbPtr == endOfFirstHalf) {
fOperand = true;
}
verbPtr++;
switch (verb) {
case SkPath::kMove_Verb:
if (fCurrentContour) {
if (fAllowOpenContours) {
complete();
} else if (!close()) {
return false;
}
}
if (!fCurrentContour) {
fCurrentContour = fContours.push_back_n(1);
fCurrentContour->setOperand(fOperand);
fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_PathOpsMask);
*fExtra.append() = -1; // start new contour
}
fFinalCurveEnd = pointsPtr++;
continue;
case SkPath::kLine_Verb: {
const SkPoint& lineEnd = pointsPtr[0];
const SkPoint& lineStart = pointsPtr[-1];
// skip degenerate points
if (lineStart.fX != lineEnd.fX || lineStart.fY != lineEnd.fY) {
fCurrentContour->addLine(&lineStart);
}
} break;
case SkPath::kQuad_Verb: {
const SkPoint* quadStart = &pointsPtr[-1];
reducedVerb = SkReduceOrder::Quad(quadStart, &fReducePts);
if (reducedVerb == 0) {
break; // skip degenerate points
}
if (reducedVerb == 1) {
const SkPoint* lineStart = fReducePts.end() - 2;
*fExtra.append() = fCurrentContour->addLine(lineStart);
break;
}
fCurrentContour->addQuad(quadStart);
} break;
case SkPath::kCubic_Verb: {
const SkPoint* cubicStart = &pointsPtr[-1];
reducedVerb = SkReduceOrder::Cubic(cubicStart, &fReducePts);
if (reducedVerb == 0) {
break; // skip degenerate points
}
if (reducedVerb == 1) {
const SkPoint* lineStart = fReducePts.end() - 2;
*fExtra.append() = fCurrentContour->addLine(lineStart);
break;
}
if (reducedVerb == 2) {
const SkPoint* quadStart = fReducePts.end() - 3;
*fExtra.append() = fCurrentContour->addQuad(quadStart);
break;
}
fCurrentContour->addCubic(cubicStart);
} break;
case SkPath::kClose_Verb:
SkASSERT(fCurrentContour);
if (!close()) {
return false;
}
continue;
default:
SkDEBUGFAIL("bad verb");
return false;
}
fFinalCurveStart = &pointsPtr[verb - 1];
pointsPtr += verb;
SkASSERT(fCurrentContour);
}
if (fCurrentContour && !fAllowOpenContours && !close()) {
return false;
}
return true;
}
|