1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkOpContour_DEFINED
#define SkOpContour_DEFINED
#include "SkOpSegment.h"
#include "SkTArray.h"
#if defined(SK_DEBUG) || !FORCE_RELEASE
#include "SkThread.h"
#endif
class SkIntersections;
class SkOpContour;
class SkPathWriter;
struct SkCoincidence {
SkOpContour* fOther;
int fSegments[2];
double fTs[2][2];
SkPoint fPts[2][2];
int fNearly[2];
};
class SkOpContour {
public:
SkOpContour() {
reset();
#if defined(SK_DEBUG) || !FORCE_RELEASE
fID = sk_atomic_inc(&SkPathOpsDebug::gContourID);
#endif
}
bool operator<(const SkOpContour& rh) const {
return fBounds.fTop == rh.fBounds.fTop
? fBounds.fLeft < rh.fBounds.fLeft
: fBounds.fTop < rh.fBounds.fTop;
}
bool addCoincident(int index, SkOpContour* other, int otherIndex,
const SkIntersections& ts, bool swap);
void addCoincidentPoints();
void addCross(const SkOpContour* crosser) {
#ifdef DEBUG_CROSS
for (int index = 0; index < fCrosses.count(); ++index) {
SkASSERT(fCrosses[index] != crosser);
}
#endif
fCrosses.push_back(crosser);
}
void addCubic(const SkPoint pts[4]) {
fSegments.push_back().addCubic(pts, fOperand, fXor);
fContainsCurves = fContainsCubics = true;
}
int addLine(const SkPoint pts[2]) {
fSegments.push_back().addLine(pts, fOperand, fXor);
return fSegments.count();
}
void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
}
bool addPartialCoincident(int index, SkOpContour* other, int otherIndex,
const SkIntersections& ts, int ptIndex, bool swap);
int addQuad(const SkPoint pts[3]) {
fSegments.push_back().addQuad(pts, fOperand, fXor);
fContainsCurves = true;
return fSegments.count();
}
int addT(int segIndex, SkOpContour* other, int otherIndex, const SkPoint& pt, double newT) {
setContainsIntercepts();
return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT);
}
int addSelfT(int segIndex, const SkPoint& pt, double newT) {
setContainsIntercepts();
return fSegments[segIndex].addSelfT(pt, newT);
}
void align(const SkOpSegment::AlignedSpan& aligned, bool swap, SkCoincidence* coincidence);
void alignCoincidence(const SkOpSegment::AlignedSpan& aligned,
SkTArray<SkCoincidence, true>* coincidences);
void alignCoincidence(const SkOpSegment::AlignedSpan& aligned) {
alignCoincidence(aligned, &fCoincidences);
alignCoincidence(aligned, &fPartialCoincidences);
}
void alignMultiples(SkTDArray<SkOpSegment::AlignedSpan>* aligned) {
int segmentCount = fSegments.count();
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
SkOpSegment& segment = fSegments[sIndex];
if (segment.hasMultiples()) {
segment.alignMultiples(aligned);
}
}
}
void alignTPt(int segmentIndex, const SkOpContour* other, int otherIndex,
bool swap, int tIndex, SkIntersections* ts, SkPoint* point) const;
const SkPathOpsBounds& bounds() const {
return fBounds;
}
bool calcAngles();
void calcCoincidentWinding();
void calcPartialCoincidentWinding();
void checkDuplicates() {
int segmentCount = fSegments.count();
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
SkOpSegment& segment = fSegments[sIndex];
if (segment.count() > 2) {
segment.checkDuplicates();
}
}
}
void checkEnds() {
if (!fContainsCurves) {
return;
}
int segmentCount = fSegments.count();
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
SkOpSegment* segment = &fSegments[sIndex];
if (segment->verb() == SkPath::kLine_Verb) {
continue;
}
if (segment->done()) {
continue; // likely coincident, nothing to do
}
segment->checkEnds();
}
}
void checkMultiples() {
int segmentCount = fSegments.count();
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
SkOpSegment& segment = fSegments[sIndex];
if (segment.count() > 2) {
segment.checkMultiples();
fMultiples |= segment.hasMultiples();
}
}
}
void checkSmall() {
int segmentCount = fSegments.count();
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
SkOpSegment& segment = fSegments[sIndex];
// OPTIMIZATION : skip segments that are done?
if (segment.hasSmall()) {
segment.checkSmall();
}
}
}
// if same point has different T values, choose a common T
void checkTiny() {
int segmentCount = fSegments.count();
if (segmentCount <= 2) {
return;
}
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
SkOpSegment& segment = fSegments[sIndex];
if (segment.hasTiny()) {
segment.checkTiny();
}
}
}
void complete() {
setBounds();
fContainsIntercepts = false;
}
bool containsCubics() const {
return fContainsCubics;
}
bool crosses(const SkOpContour* crosser) const {
for (int index = 0; index < fCrosses.count(); ++index) {
if (fCrosses[index] == crosser) {
return true;
}
}
return false;
}
bool done() const {
return fDone;
}
const SkPoint& end() const {
const SkOpSegment& segment = fSegments.back();
return segment.pts()[SkPathOpsVerbToPoints(segment.verb())];
}
void fixOtherTIndex() {
int segmentCount = fSegments.count();
for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
fSegments[sIndex].fixOtherTIndex();
}
}
bool hasMultiples() const {
return fMultiples;
}
void joinCoincidence() {
joinCoincidence(fCoincidences, false);
joinCoincidence(fPartialCoincidences, true);
}
SkOpSegment* nonVerticalSegment(int* start, int* end);
bool operand() const {
return fOperand;
}
void reset() {
fSegments.reset();
fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = fMultiples = false;
}
void resolveNearCoincidence();
SkTArray<SkOpSegment>& segments() {
return fSegments;
}
void setContainsIntercepts() {
fContainsIntercepts = true;
}
void setOperand(bool isOp) {
fOperand = isOp;
}
void setOppXor(bool isOppXor) {
fOppXor = isOppXor;
int segmentCount = fSegments.count();
for (int test = 0; test < segmentCount; ++test) {
fSegments[test].setOppXor(isOppXor);
}
}
void setXor(bool isXor) {
fXor = isXor;
}
void sortAngles();
void sortSegments();
const SkPoint& start() const {
return fSegments.front().pts()[0];
}
void toPath(SkPathWriter* path) const;
void toPartialBackward(SkPathWriter* path) const {
int segmentCount = fSegments.count();
for (int test = segmentCount - 1; test >= 0; --test) {
fSegments[test].addCurveTo(1, 0, path, true);
}
}
void toPartialForward(SkPathWriter* path) const {
int segmentCount = fSegments.count();
for (int test = 0; test < segmentCount; ++test) {
fSegments[test].addCurveTo(0, 1, path, true);
}
}
void topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY, SkOpSegment** topStart);
SkOpSegment* undoneSegment(int* start, int* end);
int updateSegment(int index, const SkPoint* pts) {
SkOpSegment& segment = fSegments[index];
segment.updatePts(pts);
return SkPathOpsVerbToPoints(segment.verb()) + 1;
}
#if DEBUG_TEST
SkTArray<SkOpSegment>& debugSegments() {
return fSegments;
}
#endif
#if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY
void debugShowActiveSpans() {
for (int index = 0; index < fSegments.count(); ++index) {
fSegments[index].debugShowActiveSpans();
}
}
#endif
#if DEBUG_SHOW_WINDING
int debugShowWindingValues(int totalSegments, int ofInterest);
static void debugShowWindingValues(const SkTArray<SkOpContour*, true>& contourList);
#endif
// available to test routines only
void dump() const;
void dumpAngles() const;
void dumpCoincidence(const SkCoincidence& ) const;
void dumpCoincidences() const;
void dumpPt(int ) const;
void dumpPts() const;
void dumpSpan(int ) const;
void dumpSpans() const;
private:
void alignPt(int index, SkPoint* point, int zeroPt) const;
int alignT(bool swap, int tIndex, SkIntersections* ts) const;
void calcCommonCoincidentWinding(const SkCoincidence& );
void checkCoincidentPair(const SkCoincidence& oneCoin, int oneIdx,
const SkCoincidence& twoCoin, int twoIdx, bool partial);
void joinCoincidence(const SkTArray<SkCoincidence, true>& , bool partial);
void setBounds();
SkTArray<SkOpSegment> fSegments;
SkTArray<SkOpSegment*, true> fSortedSegments;
int fFirstSorted;
SkTArray<SkCoincidence, true> fCoincidences;
SkTArray<SkCoincidence, true> fPartialCoincidences;
SkTArray<const SkOpContour*, true> fCrosses;
SkPathOpsBounds fBounds;
bool fContainsIntercepts; // FIXME: is this used by anybody?
bool fContainsCubics;
bool fContainsCurves;
bool fDone;
bool fMultiples; // set if some segment has multiple identical intersections with other curves
bool fOperand; // true for the second argument to a binary operator
bool fXor;
bool fOppXor;
#if defined(SK_DEBUG) || !FORCE_RELEASE
int debugID() const { return fID; }
int fID;
#else
int debugID() const { return -1; }
#endif
};
#endif
|