1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkIntersections.h"
#include "SkOpAngle.h"
#include "SkOpSegment.h"
#include "SkPathOpsCurve.h"
#include "SkTSort.h"
#if DEBUG_ANGLE
#include "SkString.h"
static const char funcName[] = "SkOpSegment::operator<";
static const int bugChar = strlen(funcName) + 1;
#endif
/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
positive y. The largest angle has a positive x and a zero y. */
#if DEBUG_ANGLE
static bool CompareResult(SkString* bugOut, const char* append, bool compare) {
bugOut->appendf(append);
bugOut->writable_str()[bugChar] = "><"[compare];
SkDebugf("%s\n", bugOut->c_str());
return compare;
}
#define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare)
#else
#define COMPARE_RESULT(append, compare) compare
#endif
bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const{
double absX = fabs(x);
double absY = fabs(y);
double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
int exponent;
(void) frexp(length, &exponent);
double epsilon = ldexp(FLT_EPSILON, exponent);
SkPath::Verb verb = fSegment->verb();
SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb);
// FIXME: the quad and cubic factors are made up ; determine actual values
double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon;
double xSlop = slop;
double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
double x1 = x - xSlop;
double y1 = y + ySlop;
double x_ry1 = x1 * ry;
double rx_y1 = rx * y1;
*result = x_ry1 < rx_y1;
double x2 = x + xSlop;
double y2 = y - ySlop;
double x_ry2 = x2 * ry;
double rx_y2 = rx * y2;
bool less2 = x_ry2 < rx_y2;
return *result == less2;
}
/*
for quads and cubics, set up a parameterized line (e.g. LineParameters )
for points [0] to [1]. See if point [2] is on that line, or on one side
or the other. If it both quads' end points are on the same side, choose
the shorter tangent. If the tangents are equal, choose the better second
tangent angle
FIXME: maybe I could set up LineParameters lazily
*/
bool SkOpAngle::operator<(const SkOpAngle& rh) const { // this/lh: left-hand; rh: right-hand
double y = dy();
double ry = rh.dy();
#if DEBUG_ANGLE
SkString bugOut;
bugOut.printf("%s _ id=%d segId=%d tStart=%1.9g tEnd=%1.9g"
" | id=%d segId=%d tStart=%1.9g tEnd=%1.9g ", funcName,
fID, fSegment->debugID(), fSegment->t(fStart), fSegment->t(fEnd),
rh.fID, rh.fSegment->debugID(), rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
#endif
double y_ry = y * ry;
if (y_ry < 0) { // if y's are opposite signs, we can do a quick return
return COMPARE_RESULT("1 y * ry < 0", y < 0);
}
// at this point, both y's must be the same sign, or one (or both) is zero
double x = dx();
double rx = rh.dx();
if (x * rx < 0) { // if x's are opposite signs, use y to determine first or second half
if (y < 0 && ry < 0) { // if y's are negative, lh x is smaller if positive
return COMPARE_RESULT("2 x_rx < 0 && y < 0 ...", x > 0);
}
if (y >= 0 && ry >= 0) { // if y's are zero or positive, lh x is smaller if negative
return COMPARE_RESULT("3 x_rx < 0 && y >= 0 ...", x < 0);
}
SkASSERT((y == 0) ^ (ry == 0)); // if one y is zero and one is negative, neg y is smaller
return COMPARE_RESULT("4 x_rx < 0 && y == 0 ...", y < 0);
}
// at this point, both x's must be the same sign, or one (or both) is zero
if (y_ry == 0) { // if either y is zero
if (y + ry < 0) { // if the other y is less than zero, it must be smaller
return COMPARE_RESULT("5 y_ry == 0 && y + ry < 0", y < 0);
}
if (y + ry > 0) { // if a y is greater than zero and an x is positive, non zero is smaller
return COMPARE_RESULT("6 y_ry == 0 && y + ry > 0", (x + rx > 0) ^ (y == 0));
}
// at this point, both y's are zero, so lines are coincident or one is degenerate
SkASSERT(x * rx != 0); // and a degenerate line should haven't gotten this far
}
// see if either curve can be lengthened before trying the tangent
if (fSegment->other(fEnd) != rh.fSegment // tangents not absolutely identical
&& rh.fSegment->other(rh.fEnd) != fSegment) { // and not intersecting
SkOpAngle longer = *this;
SkOpAngle rhLonger = rh;
if ((longer.lengthen(rh) | rhLonger.lengthen(*this)) // lengthen both
&& (fUnorderable || !longer.fUnorderable)
&& (rh.fUnorderable || !rhLonger.fUnorderable)) {
#if DEBUG_ANGLE
bugOut.prepend(" ");
#endif
return COMPARE_RESULT("10 longer.lengthen(rh) ...", longer < rhLonger);
}
}
if (y_ry != 0) { // if they aren't coincident, look for a stable cross product
// at this point, y's are the same sign, neither is zero
// and x's are the same sign, or one (or both) is zero
double x_ry = x * ry;
double rx_y = rx * y;
if (!fComputed && !rh.fComputed) {
if (!AlmostEqualUlps(x_ry, rx_y)) {
return COMPARE_RESULT("7 !fComputed && !rh.fComputed", x_ry < rx_y);
}
} else {
// if the vector was a result of subdividing a curve, see if it is stable
bool sloppy1 = x_ry < rx_y;
bool sloppy2 = !sloppy1;
if ((!fComputed || calcSlop(x, y, rx, ry, &sloppy1))
&& (!rh.fComputed || rh.calcSlop(rx, ry, x, y, &sloppy2))
&& sloppy1 != sloppy2) {
return COMPARE_RESULT("8 CalcSlop(x, y ...", sloppy1);
}
}
}
if (fSide * rh.fSide == 0) {
SkASSERT(fSide + rh.fSide != 0);
return COMPARE_RESULT("9 fSide * rh.fSide == 0 ...", fSide < rh.fSide);
}
// at this point, the initial tangent line is nearly coincident
// see if edges curl away from each other
if (fSide * rh.fSide < 0 && (!approximately_zero(fSide) || !approximately_zero(rh.fSide))) {
return COMPARE_RESULT("9b fSide * rh.fSide < 0 ...", fSide < rh.fSide);
}
if (fUnsortable || rh.fUnsortable) {
// even with no solution, return a stable sort
return COMPARE_RESULT("11 fUnsortable || rh.fUnsortable", this < &rh);
}
SkPath::Verb verb = fSegment->verb();
SkPath::Verb rVerb = rh.fSegment->verb();
if ((verb == SkPath::kLine_Verb && approximately_zero(y) && approximately_zero(x))
|| (rVerb == SkPath::kLine_Verb
&& approximately_zero(ry) && approximately_zero(rx))) {
// See general unsortable comment below. This case can happen when
// one line has a non-zero change in t but no change in x and y.
fUnsortable = true;
return COMPARE_RESULT("12 verb == SkPath::kLine_Verb ...", this < &rh);
}
if (fSegment->isTiny(this) || rh.fSegment->isTiny(&rh)) {
fUnsortable = true;
return COMPARE_RESULT("13 verb == fSegment->isTiny(this) ...", this < &rh);
}
SkASSERT(verb >= SkPath::kQuad_Verb);
SkASSERT(rVerb >= SkPath::kQuad_Verb);
// FIXME: until I can think of something better, project a ray from the
// end of the shorter tangent to midway between the end points
// through both curves and use the resulting angle to sort
// FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive
double len = fTangent1.normalSquared();
double rlen = rh.fTangent1.normalSquared();
SkDLine ray;
SkIntersections i, ri;
int roots, rroots;
bool flip = false;
bool useThis;
bool leftLessThanRight = fSide > 0;
do {
useThis = (len < rlen) ^ flip;
const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart;
SkPath::Verb partVerb = useThis ? verb : rVerb;
ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ?
part[2] : part[1];
ray[1] = SkDPoint::Mid(part[0], part[SkPathOpsVerbToPoints(partVerb)]);
SkASSERT(ray[0] != ray[1]);
roots = (i.*CurveRay[SkPathOpsVerbToPoints(verb)])(fSegment->pts(), ray);
rroots = (ri.*CurveRay[SkPathOpsVerbToPoints(rVerb)])(rh.fSegment->pts(), ray);
} while ((roots == 0 || rroots == 0) && (flip ^= true));
if (roots == 0 || rroots == 0) {
// FIXME: we don't have a solution in this case. The interim solution
// is to mark the edges as unsortable, exclude them from this and
// future computations, and allow the returned path to be fragmented
fUnsortable = true;
return COMPARE_RESULT("roots == 0 || rroots == 0", this < &rh);
}
SkASSERT(fSide != 0 && rh.fSide != 0);
SkASSERT(fSide * rh.fSide > 0); // both are the same sign
SkDPoint lLoc;
double best = SK_ScalarInfinity;
#if DEBUG_SORT
SkDebugf("lh=%d rh=%d use-lh=%d ray={{%1.9g,%1.9g}, {%1.9g,%1.9g}} %c\n",
fSegment->debugID(), rh.fSegment->debugID(), useThis, ray[0].fX, ray[0].fY,
ray[1].fX, ray[1].fY, "-+"[fSide > 0]);
#endif
for (int index = 0; index < roots; ++index) {
SkDPoint loc = i.pt(index);
SkDVector dxy = loc - ray[0];
double dist = dxy.lengthSquared();
#if DEBUG_SORT
SkDebugf("best=%1.9g dist=%1.9g loc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n",
best, dist, loc.fX, loc.fY, dxy.fX, dxy.fY);
#endif
if (best > dist) {
lLoc = loc;
best = dist;
}
}
flip = false;
SkDPoint rLoc;
for (int index = 0; index < rroots; ++index) {
rLoc = ri.pt(index);
SkDVector dxy = rLoc - ray[0];
double dist = dxy.lengthSquared();
#if DEBUG_SORT
SkDebugf("best=%1.9g dist=%1.9g %c=(fSide < 0) rLoc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n",
best, dist, "><"[fSide < 0], rLoc.fX, rLoc.fY, dxy.fX, dxy.fY);
#endif
if (best > dist) {
flip = true;
break;
}
}
if (flip) {
leftLessThanRight = !leftLessThanRight;
}
return COMPARE_RESULT("14 leftLessThanRight", leftLessThanRight);
}
bool SkOpAngle::isHorizontal() const {
return dy() == 0 && fSegment->verb() == SkPath::kLine_Verb;
}
// lengthen cannot cross opposite angle
bool SkOpAngle::lengthen(const SkOpAngle& opp) {
if (fSegment->other(fEnd) == opp.fSegment) {
return false;
}
// FIXME: make this a while loop instead and make it as large as possible?
int newEnd = fEnd;
if (fStart < fEnd ? ++newEnd < fSegment->count() : --newEnd >= 0) {
fEnd = newEnd;
setSpans();
return true;
}
return false;
}
void SkOpAngle::set(const SkOpSegment* segment, int start, int end) {
fSegment = segment;
fStart = start;
fEnd = end;
setSpans();
}
void SkOpAngle::setSpans() {
fUnorderable = false;
if (fSegment->verb() == SkPath::kLine_Verb) {
fUnsortable = false;
} else {
// if start-1 exists and is tiny, then start pt may have moved
int smaller = SkMin32(fStart, fEnd);
int tinyCheck = smaller;
while (tinyCheck > 0 && fSegment->isTiny(tinyCheck - 1)) {
--tinyCheck;
}
if ((fUnsortable = smaller > 0 && tinyCheck == 0)) {
return;
}
int larger = SkMax32(fStart, fEnd);
tinyCheck = larger;
int max = fSegment->count() - 1;
while (tinyCheck < max && fSegment->isTiny(tinyCheck + 1)) {
++tinyCheck;
}
if ((fUnsortable = larger < max && tinyCheck == max)) {
return;
}
}
fComputed = fSegment->subDivide(fStart, fEnd, &fCurvePart);
// FIXME: slight errors in subdivision cause sort trouble later on. As an experiment, try
// rounding the curve part to float precision here
// fCurvePart.round(fSegment->verb());
switch (fSegment->verb()) {
case SkPath::kLine_Verb: {
// OPTIMIZATION: for pure line compares, we never need fTangent1.c
fTangent1.lineEndPoints(*SkTCast<SkDLine*>(&fCurvePart));
fSide = 0;
} break;
case SkPath::kQuad_Verb: {
SkDQuad& quad = *SkTCast<SkDQuad*>(&fCurvePart);
fTangent1.quadEndPoints(quad);
fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only
if (fComputed && dx() > 0 && approximately_zero(dy())) {
SkDCubic origCurve; // can't use segment's curve in place since it may be flipped
int last = fSegment->count() - 1;
fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve);
SkLineParameters origTan;
origTan.quadEndPoints(*SkTCast<SkDQuad*>(&origCurve));
if ((fUnorderable = origTan.dx() <= 0
|| (dy() != origTan.dy() && dy() * origTan.dy() <= 0))) { // signs match?
return;
}
}
} break;
case SkPath::kCubic_Verb: {
fTangent1.cubicEndPoints(fCurvePart);
double testTs[4];
// OPTIMIZATION: keep inflections precomputed with cubic segment?
const SkPoint* pts = fSegment->pts();
int testCount = SkDCubic::FindInflections(pts, testTs);
double startT = fSegment->t(fStart);
double endT = fSegment->t(fEnd);
double limitT = endT;
int index;
for (index = 0; index < testCount; ++index) {
if (!between(startT, testTs[index], limitT)) {
testTs[index] = -1;
}
}
testTs[testCount++] = startT;
testTs[testCount++] = endT;
SkTQSort<double>(testTs, &testTs[testCount - 1]);
double bestSide = 0;
int testCases = (testCount << 1) - 1;
index = 0;
while (testTs[index] < 0) {
++index;
}
index <<= 1;
for (; index < testCases; ++index) {
int testIndex = index >> 1;
double testT = testTs[testIndex];
if (index & 1) {
testT = (testT + testTs[testIndex + 1]) / 2;
}
// OPTIMIZE: could avoid call for t == startT, endT
SkDPoint pt = dcubic_xy_at_t(pts, testT);
double testSide = fTangent1.pointDistance(pt);
if (fabs(bestSide) < fabs(testSide)) {
bestSide = testSide;
}
}
fSide = -bestSide; // compare sign only
if (fComputed && dx() > 0 && approximately_zero(dy())) {
SkDCubic origCurve; // can't use segment's curve in place since it may be flipped
int last = fSegment->count() - 1;
fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve);
SkLineParameters origTan;
origTan.cubicEndPoints(origCurve);
if ((fUnorderable = origTan.dx() <= 0)) {
fUnsortable = fSegment->isTiny(this);
return;
}
// if one is < 0 and the other is >= 0
if ((fUnorderable = (dy() < 0) ^ (origTan.dy() < 0))) {
fUnsortable = fSegment->isTiny(this);
return;
}
SkDCubicPair split = origCurve.chopAt(startT);
SkLineParameters splitTan;
splitTan.cubicEndPoints(fStart < fEnd ? split.second() : split.first());
if ((fUnorderable = splitTan.dx() <= 0)) {
fUnsortable = fSegment->isTiny(this);
return;
}
// if one is < 0 and the other is >= 0
if ((fUnorderable = (dy() < 0) ^ (splitTan.dy() < 0))) {
fUnsortable = fSegment->isTiny(this);
return;
}
}
} break;
default:
SkASSERT(0);
}
if ((fUnsortable = approximately_zero(dx()) && approximately_zero(dy()))) {
return;
}
SkASSERT(fStart != fEnd);
int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro?
for (int index = fStart; index != fEnd; index += step) {
#if 1
const SkOpSpan& thisSpan = fSegment->span(index);
const SkOpSpan& nextSpan = fSegment->span(index + step);
if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) {
continue;
}
fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd;
#if DEBUG_UNSORTABLE
if (fUnsortable) {
SkPoint iPt = fSegment->xyAtT(index);
SkPoint ePt = fSegment->xyAtT(index + step);
SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
}
#endif
return;
#else
if ((*fSpans)[index].fUnsortableStart) {
fUnsortable = true;
return;
}
#endif
}
#if 1
#if DEBUG_UNSORTABLE
SkPoint iPt = fSegment->xyAtT(fStart);
SkPoint ePt = fSegment->xyAtT(fEnd);
SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
#endif
fUnsortable = true;
#endif
}
|