1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkOpAngle.h"
#include "SkOpSegment.h"
#include "SkPathOpsCurve.h"
#include "SkTSort.h"
/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
positive y. The largest angle has a positive x and a zero y. */
#if DEBUG_ANGLE
static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
bool compare) {
SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
return compare;
}
#define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
compare)
#else
#define COMPARE_RESULT(append, compare) compare
#endif
/* quarter angle values for sector
31 x > 0, y == 0 horizontal line (to the right)
0 x > 0, y == epsilon quad/cubic horizontal tangent eventually going +y
1 x > 0, y > 0, x > y nearer horizontal angle
2 x + e == y quad/cubic 45 going horiz
3 x > 0, y > 0, x == y 45 angle
4 x == y + e quad/cubic 45 going vert
5 x > 0, y > 0, x < y nearer vertical angle
6 x == epsilon, y > 0 quad/cubic vertical tangent eventually going +x
7 x == 0, y > 0 vertical line (to the top)
8 7 6
9 | 5
10 | 4
11 | 3
12 \ | / 2
13 | 1
14 | 0
15 --------------+------------- 31
16 | 30
17 | 29
18 / | \ 28
19 | 27
20 | 26
21 | 25
22 23 24
*/
// return true if lh < this < rh
bool SkOpAngle::after(SkOpAngle* test) {
SkOpAngle* lh = test;
SkOpAngle* rh = lh->fNext;
SkASSERT(lh != rh);
fPart.fCurve = fOriginalCurvePart;
lh->fPart.fCurve = lh->fOriginalCurvePart;
lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]);
rh->fPart.fCurve = rh->fOriginalCurvePart;
rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]);
#if DEBUG_ANGLE
SkString bugOut;
bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
lh->fStart->t(), lh->fEnd->t(),
segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
rh->fStart->t(), rh->fEnd->t());
SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
#endif
if (lh->fComputeSector && !lh->computeSector()) {
return COMPARE_RESULT(1, true);
}
if (fComputeSector && !this->computeSector()) {
return COMPARE_RESULT(2, true);
}
if (rh->fComputeSector && !rh->computeSector()) {
return COMPARE_RESULT(3, true);
}
#if DEBUG_ANGLE // reset bugOut with computed sectors
bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
lh->fStart->t(), lh->fEnd->t(),
segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
rh->fStart->t(), rh->fEnd->t());
#endif
bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
int lrOrder; // set to -1 if either order works
if (!lrOverlap) { // no lh/rh sector overlap
if (!ltrOverlap) { // no lh/this/rh sector overlap
return COMPARE_RESULT(4, (lh->fSectorEnd > rh->fSectorStart)
^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
}
int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
/* A tiny change can move the start +/- 4. The order can only be determined if
lr gap is not 12 to 20 or -12 to -20.
-31 ..-21 1
-20 ..-12 -1
-11 .. -1 0
0 shouldn't get here
11 .. 1 1
12 .. 20 -1
21 .. 31 0
*/
lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
} else {
lrOrder = (int) lh->orderable(rh);
if (!ltrOverlap) {
return COMPARE_RESULT(5, !lrOrder);
}
}
int ltOrder;
SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
if (lh->fSectorMask & fSectorMask) {
ltOrder = (int) lh->orderable(this);
} else {
int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
}
int trOrder;
if (rh->fSectorMask & fSectorMask) {
trOrder = (int) orderable(rh);
} else {
int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
}
this->alignmentSameSide(lh, <Order);
this->alignmentSameSide(rh, &trOrder);
if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
}
SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
// There's not enough information to sort. Get the pairs of angles in opposite planes.
// If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
// FIXME : once all variants are understood, rewrite this more simply
if (ltOrder == 0 && lrOrder == 0) {
SkASSERT(trOrder < 0);
// FIXME : once this is verified to work, remove one opposite angle call
SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
bool ltOpposite = lh->oppositePlanes(this);
SkOPASSERT(lrOpposite != ltOpposite);
return COMPARE_RESULT(8, ltOpposite);
} else if (ltOrder == 1 && trOrder == 0) {
SkASSERT(lrOrder < 0);
bool trOpposite = oppositePlanes(rh);
return COMPARE_RESULT(9, trOpposite);
} else if (lrOrder == 1 && trOrder == 1) {
SkASSERT(ltOrder < 0);
// SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
bool lrOpposite = lh->oppositePlanes(rh);
// SkASSERT(lrOpposite != trOpposite);
return COMPARE_RESULT(10, lrOpposite);
}
if (lrOrder < 0) {
if (ltOrder < 0) {
return COMPARE_RESULT(11, trOrder);
}
return COMPARE_RESULT(12, ltOrder);
}
return COMPARE_RESULT(13, !lrOrder);
}
// given a line, see if the opposite curve's convex hull is all on one side
// returns -1=not on one side 0=this CW of test 1=this CCW of test
int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
SkASSERT(!fPart.isCurve());
SkASSERT(test->fPart.isCurve());
SkDPoint origin = fPart.fCurve[0];
SkDVector line = fPart.fCurve[1] - origin;
double crosses[3];
SkPath::Verb testVerb = test->segment()->verb();
int iMax = SkPathOpsVerbToPoints(testVerb);
// SkASSERT(origin == test.fCurveHalf[0]);
const SkDCurve& testCurve = test->fPart.fCurve;
for (int index = 1; index <= iMax; ++index) {
double xy1 = line.fX * (testCurve[index].fY - origin.fY);
double xy2 = line.fY * (testCurve[index].fX - origin.fX);
crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
}
if (crosses[0] * crosses[1] < 0) {
return -1;
}
if (SkPath::kCubic_Verb == testVerb) {
if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
return -1;
}
}
if (crosses[0]) {
return crosses[0] < 0;
}
if (crosses[1]) {
return crosses[1] < 0;
}
if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
return crosses[2] < 0;
}
fUnorderable = true;
return -1;
}
// To sort the angles, all curves are translated to have the same starting point.
// If the curve's control point in its original position is on one side of a compared line,
// and translated is on the opposite side, reverse the previously computed order.
void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const {
if (*order < 0) {
return;
}
if (fPart.isCurve()) {
// This should support all curve types, but only bug that requires this has lines
// Turning on for curves causes existing tests to fail
return;
}
if (test->fPart.isCurve()) {
return;
}
const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0];
const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0];
if (xOrigin == oOrigin) {
return;
}
int iMax = SkPathOpsVerbToPoints(this->segment()->verb());
SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin;
SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin;
for (int index = 1; index <= iMax; ++index) {
const SkDPoint& testPt = fPart.fCurve[index];
double xCross = oLine.crossCheck(testPt - xOrigin);
double oCross = xLine.crossCheck(testPt - oOrigin);
if (oCross * xCross < 0) {
*order ^= 1;
break;
}
}
}
bool SkOpAngle::checkCrossesZero() const {
int start = SkTMin(fSectorStart, fSectorEnd);
int end = SkTMax(fSectorStart, fSectorEnd);
bool crossesZero = end - start > 16;
return crossesZero;
}
bool SkOpAngle::checkParallel(SkOpAngle* rh) {
SkDVector scratch[2];
const SkDVector* sweep, * tweep;
if (this->fPart.isOrdered()) {
sweep = this->fPart.fSweep;
} else {
scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0];
sweep = &scratch[0];
}
if (rh->fPart.isOrdered()) {
tweep = rh->fPart.fSweep;
} else {
scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0];
tweep = &scratch[1];
}
double s0xt0 = sweep->crossCheck(*tweep);
if (tangentsDiverge(rh, s0xt0)) {
return s0xt0 < 0;
}
// compute the perpendicular to the endpoints and see where it intersects the opposite curve
// if the intersections within the t range, do a cross check on those
bool inside;
if (!fEnd->contains(rh->fEnd)) {
if (this->endToSide(rh, &inside)) {
return inside;
}
if (rh->endToSide(this, &inside)) {
return !inside;
}
}
if (this->midToSide(rh, &inside)) {
return inside;
}
if (rh->midToSide(this, &inside)) {
return !inside;
}
// compute the cross check from the mid T values (last resort)
SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
double m0xm1 = m0.crossCheck(m1);
if (m0xm1 == 0) {
this->fUnorderable = true;
rh->fUnorderable = true;
return true;
}
return m0xm1 < 0;
}
// the original angle is too short to get meaningful sector information
// lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
// would cause it to intersect one of the adjacent angles
bool SkOpAngle::computeSector() {
if (fComputedSector) {
return !fUnorderable;
}
fComputedSector = true;
bool stepUp = fStart->t() < fEnd->t();
SkOpSpanBase* checkEnd = fEnd;
if (checkEnd->final() && stepUp) {
fUnorderable = true;
return false;
}
do {
// advance end
const SkOpSegment* other = checkEnd->segment();
const SkOpSpanBase* oSpan = other->head();
do {
if (oSpan->segment() != segment()) {
continue;
}
if (oSpan == checkEnd) {
continue;
}
if (!approximately_equal(oSpan->t(), checkEnd->t())) {
continue;
}
goto recomputeSector;
} while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
checkEnd = stepUp ? !checkEnd->final()
? checkEnd->upCast()->next() : nullptr
: checkEnd->prev();
} while (checkEnd);
recomputeSector:
SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
: checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
fUnorderable = true;
return false;
}
if (stepUp != (fStart->t() < computedEnd->t())) {
fUnorderable = true;
return false;
}
SkOpSpanBase* saveEnd = fEnd;
fComputedEnd = fEnd = computedEnd;
setSpans();
setSector();
fEnd = saveEnd;
return !fUnorderable;
}
int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) {
const SkDVector* sweep = this->fPart.fSweep;
const SkDVector* tweep = rh->fPart.fSweep;
double s0xs1 = sweep[0].crossCheck(sweep[1]);
double s0xt0 = sweep[0].crossCheck(tweep[0]);
double s1xt0 = sweep[1].crossCheck(tweep[0]);
bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
double s0xt1 = sweep[0].crossCheck(tweep[1]);
double s1xt1 = sweep[1].crossCheck(tweep[1]);
tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
double t0xt1 = tweep[0].crossCheck(tweep[1]);
if (tBetweenS) {
return -1;
}
if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) { // s0 to s1 equals t0 to t1
return -1;
}
bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
if (sBetweenT) {
return -1;
}
// if all of the sweeps are in the same half plane, then the order of any pair is enough
if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
return 0;
}
if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
return 1;
}
// if the outside sweeps are greater than 180 degress:
// first assume the inital tangents are the ordering
// if the midpoint direction matches the inital order, that is enough
SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
double m0xm1 = m0.crossCheck(m1);
if (s0xt0 > 0 && m0xm1 > 0) {
return 0;
}
if (s0xt0 < 0 && m0xm1 < 0) {
return 1;
}
if (tangentsDiverge(rh, s0xt0)) {
return s0xt0 < 0;
}
return m0xm1 < 0;
}
// OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
double SkOpAngle::distEndRatio(double dist) const {
double longest = 0;
const SkOpSegment& segment = *this->segment();
int ptCount = SkPathOpsVerbToPoints(segment.verb());
const SkPoint* pts = segment.pts();
for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
if (idx1 == idx2) {
continue;
}
SkDVector v;
v.set(pts[idx2] - pts[idx1]);
double lenSq = v.lengthSquared();
longest = SkTMax(longest, lenSq);
}
}
return sqrt(longest) / dist;
}
bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
SkPath::Verb lVerb = this->segment()->verb();
SkPath::Verb rVerb = rh->segment()->verb();
int lPts = SkPathOpsVerbToPoints(lVerb);
int rPts = SkPathOpsVerbToPoints(rVerb);
SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}},
{{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}};
if (this->fEnd->contains(rh->fEnd)) {
return checkParallel(rh);
}
double smallTs[2] = {-1, -1};
bool limited[2] = {false, false};
for (int index = 0; index < 2; ++index) {
SkPath::Verb cVerb = index ? rVerb : lVerb;
// if the curve is a line, then the line and the ray intersect only at their crossing
if (cVerb == SkPath::kLine_Verb) {
continue;
}
const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
SkIntersections i;
(*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
double tStart = index ? rh->fStart->t() : this->fStart->t();
double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
double t = testAscends ? 0 : 1;
for (int idx2 = 0; idx2 < i.used(); ++idx2) {
double testT = i[0][idx2];
if (!approximately_between_orderable(tStart, testT, tEnd)) {
continue;
}
if (approximately_equal_orderable(tStart, testT)) {
continue;
}
smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
limited[index] = approximately_equal_orderable(t, tEnd);
}
}
bool sRayLonger = false;
SkDVector sCept = {0, 0};
double sCeptT = -1;
int sIndex = -1;
bool useIntersect = false;
for (int index = 0; index < 2; ++index) {
if (smallTs[index] < 0) {
continue;
}
const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
SkDVector cept = dPt - rays[index][0];
// If this point is on the curve, it should have been detected earlier by ordinary
// curve intersection. This may be hard to determine in general, but for lines,
// the point could be close to or equal to its end, but shouldn't be near the start.
if ((index ? lPts : rPts) == 1) {
SkDVector total = rays[index][1] - rays[index][0];
if (cept.lengthSquared() * 2 < total.lengthSquared()) {
continue;
}
}
SkDVector end = rays[index][1] - rays[index][0];
if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
continue;
}
double rayDist = cept.length();
double endDist = end.length();
bool rayLonger = rayDist > endDist;
if (limited[0] && limited[1] && rayLonger) {
useIntersect = true;
sRayLonger = rayLonger;
sCept = cept;
sCeptT = smallTs[index];
sIndex = index;
break;
}
double delta = fabs(rayDist - endDist);
double minX, minY, maxX, maxY;
minX = minY = SK_ScalarInfinity;
maxX = maxY = -SK_ScalarInfinity;
const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve;
int ptCount = index ? rPts : lPts;
for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
minX = SkTMin(minX, curve[idx2].fX);
minY = SkTMin(minY, curve[idx2].fY);
maxX = SkTMax(maxX, curve[idx2].fX);
maxY = SkTMax(maxY, curve[idx2].fY);
}
double maxWidth = SkTMax(maxX - minX, maxY - minY);
delta /= maxWidth;
if (delta > 1e-3 && (useIntersect ^= true)) { // FIXME: move this magic number
sRayLonger = rayLonger;
sCept = cept;
sCeptT = smallTs[index];
sIndex = index;
}
}
if (useIntersect) {
const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve;
const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
double tStart = sIndex ? rh->fStart->t() : fStart->t();
SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
double septDir = mid.crossCheck(sCept);
if (!septDir) {
return checkParallel(rh);
}
return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
} else {
return checkParallel(rh);
}
}
bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
const SkOpSegment* segment = this->segment();
SkPath::Verb verb = segment->verb();
SkDLine rayEnd;
rayEnd[0].set(this->fEnd->pt());
rayEnd[1] = rayEnd[0];
SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
this->fEnd->t());
rayEnd[1].fX += slopeAtEnd.fY;
rayEnd[1].fY -= slopeAtEnd.fX;
SkIntersections iEnd;
const SkOpSegment* oppSegment = rh->segment();
SkPath::Verb oppVerb = oppSegment->verb();
(*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
double endDist;
int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
if (closestEnd < 0) {
return false;
}
if (!endDist) {
return false;
}
SkDPoint start;
start.set(this->fStart->pt());
// OPTIMIZATION: multiple times in the code we find the max scalar
double minX, minY, maxX, maxY;
minX = minY = SK_ScalarInfinity;
maxX = maxY = -SK_ScalarInfinity;
const SkDCurve& curve = rh->fPart.fCurve;
int oppPts = SkPathOpsVerbToPoints(oppVerb);
for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
minX = SkTMin(minX, curve[idx2].fX);
minY = SkTMin(minY, curve[idx2].fY);
maxX = SkTMax(maxX, curve[idx2].fX);
maxY = SkTMax(maxY, curve[idx2].fY);
}
double maxWidth = SkTMax(maxX - minX, maxY - minY);
endDist /= maxWidth;
if (endDist < 5e-12) { // empirically found
return false;
}
const SkDPoint* endPt = &rayEnd[0];
SkDPoint oppPt = iEnd.pt(closestEnd);
SkDVector vLeft = *endPt - start;
SkDVector vRight = oppPt - start;
double dir = vLeft.crossNoNormalCheck(vRight);
if (!dir) {
return false;
}
*inside = dir < 0;
return true;
}
/* y<0 y==0 y>0 x<0 x==0 x>0 xy<0 xy==0 xy>0
0 x x x
1 x x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x x
7 x x x
8 x x x
9 x x x
10 x x x
11 x x x
12 x x x
13 x x x
14 x x x
15 x x x
*/
int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
double absX = fabs(x);
double absY = fabs(y);
double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
// If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
// one could coin the term sedecimant for a space divided into 16 sections.
// http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
static const int sedecimant[3][3][3] = {
// y<0 y==0 y>0
// x<0 x==0 x>0 x<0 x==0 x>0 x<0 x==0 x>0
{{ 4, 3, 2}, { 7, -1, 15}, {10, 11, 12}}, // abs(x) < abs(y)
{{ 5, -1, 1}, {-1, -1, -1}, { 9, -1, 13}}, // abs(x) == abs(y)
{{ 6, 3, 0}, { 7, -1, 15}, { 8, 11, 14}}, // abs(x) > abs(y)
};
int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
// SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
return sector;
}
SkOpGlobalState* SkOpAngle::globalState() const {
return this->segment()->globalState();
}
// OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
// OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
bool SkOpAngle::insert(SkOpAngle* angle) {
if (angle->fNext) {
if (loopCount() >= angle->loopCount()) {
if (!merge(angle)) {
return true;
}
} else if (fNext) {
if (!angle->merge(this)) {
return true;
}
} else {
angle->insert(this);
}
return true;
}
bool singleton = nullptr == fNext;
if (singleton) {
fNext = this;
}
SkOpAngle* next = fNext;
if (next->fNext == this) {
if (singleton || angle->after(this)) {
this->fNext = angle;
angle->fNext = next;
} else {
next->fNext = angle;
angle->fNext = this;
}
debugValidateNext();
return true;
}
SkOpAngle* last = this;
bool flipAmbiguity = false;
do {
SkASSERT(last->fNext == next);
if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) {
last->fNext = angle;
angle->fNext = next;
debugValidateNext();
return true;
}
last = next;
if (last == this) {
FAIL_IF(flipAmbiguity);
// We're in a loop. If a sort was ambiguous, flip it to end the loop.
flipAmbiguity = true;
}
next = next->fNext;
} while (true);
return true;
}
SkOpSpanBase* SkOpAngle::lastMarked() const {
if (fLastMarked) {
if (fLastMarked->chased()) {
return nullptr;
}
fLastMarked->setChased(true);
}
return fLastMarked;
}
bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
if (!fNext) {
return false;
}
const SkOpAngle* first = this;
const SkOpAngle* loop = this;
const SkOpSegment* tSegment = angle->fStart->segment();
double tStart = angle->fStart->t();
double tEnd = angle->fEnd->t();
do {
const SkOpSegment* lSegment = loop->fStart->segment();
if (lSegment != tSegment) {
continue;
}
double lStart = loop->fStart->t();
if (lStart != tEnd) {
continue;
}
double lEnd = loop->fEnd->t();
if (lEnd == tStart) {
return true;
}
} while ((loop = loop->fNext) != first);
return false;
}
int SkOpAngle::loopCount() const {
int count = 0;
const SkOpAngle* first = this;
const SkOpAngle* next = this;
do {
next = next->fNext;
++count;
} while (next && next != first);
return count;
}
bool SkOpAngle::merge(SkOpAngle* angle) {
SkASSERT(fNext);
SkASSERT(angle->fNext);
SkOpAngle* working = angle;
do {
if (this == working) {
return false;
}
working = working->fNext;
} while (working != angle);
do {
SkOpAngle* next = working->fNext;
working->fNext = nullptr;
insert(working);
working = next;
} while (working != angle);
// it's likely that a pair of the angles are unorderable
debugValidateNext();
return true;
}
double SkOpAngle::midT() const {
return (fStart->t() + fEnd->t()) / 2;
}
bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
const SkOpSegment* segment = this->segment();
SkPath::Verb verb = segment->verb();
const SkPoint& startPt = this->fStart->pt();
const SkPoint& endPt = this->fEnd->pt();
SkDPoint dStartPt;
dStartPt.set(startPt);
SkDLine rayMid;
rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
SkIntersections iMid;
(*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
if (iOutside < 0) {
return false;
}
const SkOpSegment* oppSegment = rh->segment();
SkPath::Verb oppVerb = oppSegment->verb();
SkIntersections oppMid;
(*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
if (oppOutside < 0) {
return false;
}
SkDVector iSide = iMid.pt(iOutside) - dStartPt;
SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
double dir = iSide.crossCheck(oppSide);
if (!dir) {
return false;
}
*inside = dir < 0;
return true;
}
bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
return startSpan >= 8;
}
bool SkOpAngle::orderable(SkOpAngle* rh) {
int result;
if (!fPart.isCurve()) {
if (!rh->fPart.isCurve()) {
double leftX = fTangentHalf.dx();
double leftY = fTangentHalf.dy();
double rightX = rh->fTangentHalf.dx();
double rightY = rh->fTangentHalf.dy();
double x_ry = leftX * rightY;
double rx_y = rightX * leftY;
if (x_ry == rx_y) {
if (leftX * rightX < 0 || leftY * rightY < 0) {
return true; // exactly 180 degrees apart
}
goto unorderable;
}
SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
return x_ry < rx_y;
}
if ((result = this->allOnOneSide(rh)) >= 0) {
return result;
}
if (fUnorderable || approximately_zero(rh->fSide)) {
goto unorderable;
}
} else if (!rh->fPart.isCurve()) {
if ((result = rh->allOnOneSide(this)) >= 0) {
return !result;
}
if (rh->fUnorderable || approximately_zero(fSide)) {
goto unorderable;
}
} else if ((result = this->convexHullOverlaps(rh)) >= 0) {
return result;
}
return this->endsIntersect(rh);
unorderable:
fUnorderable = true;
rh->fUnorderable = true;
return true;
}
// OPTIMIZE: if this shows up in a profile, add a previous pointer
// as is, this should be rarely called
SkOpAngle* SkOpAngle::previous() const {
SkOpAngle* last = fNext;
do {
SkOpAngle* next = last->fNext;
if (next == this) {
return last;
}
last = next;
} while (true);
}
SkOpSegment* SkOpAngle::segment() const {
return fStart->segment();
}
void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
fStart = start;
fComputedEnd = fEnd = end;
SkASSERT(start != end);
fNext = nullptr;
fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false;
setSpans();
setSector();
SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
}
void SkOpAngle::setSpans() {
fUnorderable = false;
fLastMarked = nullptr;
if (!fStart) {
fUnorderable = true;
return;
}
const SkOpSegment* segment = fStart->segment();
const SkPoint* pts = segment->pts();
SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb); // required for SkDCurve debug check
SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY
= SK_ScalarNaN); // make the non-line part uninitialized
SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb()); // set the curve type for real
segment->subDivide(fStart, fEnd, &fPart.fCurve); // set at least the line part if not more
fOriginalCurvePart = fPart.fCurve;
const SkPath::Verb verb = segment->verb();
fPart.setCurveHullSweep(verb);
if (SkPath::kLine_Verb != verb && !fPart.isCurve()) {
SkDLine lineHalf;
fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)];
fOriginalCurvePart[1] = fPart.fCurve[1];
lineHalf[0].set(fPart.fCurve[0].asSkPoint());
lineHalf[1].set(fPart.fCurve[1].asSkPoint());
fTangentHalf.lineEndPoints(lineHalf);
fSide = 0;
}
switch (verb) {
case SkPath::kLine_Verb: {
SkASSERT(fStart != fEnd);
const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
SkDLine lineHalf;
lineHalf[0].set(fStart->pt());
lineHalf[1].set(cP1);
fTangentHalf.lineEndPoints(lineHalf);
fSide = 0;
} return;
case SkPath::kQuad_Verb:
case SkPath::kConic_Verb: {
SkLineParameters tangentPart;
(void) tangentPart.quadEndPoints(fPart.fCurve.fQuad);
fSide = -tangentPart.pointDistance(fPart.fCurve[2]); // not normalized -- compare sign only
} break;
case SkPath::kCubic_Verb: {
SkLineParameters tangentPart;
(void) tangentPart.cubicPart(fPart.fCurve.fCubic);
fSide = -tangentPart.pointDistance(fPart.fCurve[3]);
double testTs[4];
// OPTIMIZATION: keep inflections precomputed with cubic segment?
int testCount = SkDCubic::FindInflections(pts, testTs);
double startT = fStart->t();
double endT = fEnd->t();
double limitT = endT;
int index;
for (index = 0; index < testCount; ++index) {
if (!::between(startT, testTs[index], limitT)) {
testTs[index] = -1;
}
}
testTs[testCount++] = startT;
testTs[testCount++] = endT;
SkTQSort<double>(testTs, &testTs[testCount - 1]);
double bestSide = 0;
int testCases = (testCount << 1) - 1;
index = 0;
while (testTs[index] < 0) {
++index;
}
index <<= 1;
for (; index < testCases; ++index) {
int testIndex = index >> 1;
double testT = testTs[testIndex];
if (index & 1) {
testT = (testT + testTs[testIndex + 1]) / 2;
}
// OPTIMIZE: could avoid call for t == startT, endT
SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
SkLineParameters tangentPart;
tangentPart.cubicEndPoints(fPart.fCurve.fCubic);
double testSide = tangentPart.pointDistance(pt);
if (fabs(bestSide) < fabs(testSide)) {
bestSide = testSide;
}
}
fSide = -bestSide; // compare sign only
} break;
default:
SkASSERT(0);
}
}
void SkOpAngle::setSector() {
if (!fStart) {
fUnorderable = true;
return;
}
const SkOpSegment* segment = fStart->segment();
SkPath::Verb verb = segment->verb();
fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY);
if (fSectorStart < 0) {
goto deferTilLater;
}
if (!fPart.isCurve()) { // if it's a line or line-like, note that both sectors are the same
SkASSERT(fSectorStart >= 0);
fSectorEnd = fSectorStart;
fSectorMask = 1 << fSectorStart;
return;
}
SkASSERT(SkPath::kLine_Verb != verb);
fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY);
if (fSectorEnd < 0) {
deferTilLater:
fSectorStart = fSectorEnd = -1;
fSectorMask = 0;
fComputeSector = true; // can't determine sector until segment length can be found
return;
}
if (fSectorEnd == fSectorStart
&& (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
fSectorMask = 1 << fSectorStart;
return;
}
bool crossesZero = this->checkCrossesZero();
int start = SkTMin(fSectorStart, fSectorEnd);
bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
// bump the start and end of the sector span if they are on exact compass points
if ((fSectorStart & 3) == 3) {
fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
}
if ((fSectorEnd & 3) == 3) {
fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
}
crossesZero = this->checkCrossesZero();
start = SkTMin(fSectorStart, fSectorEnd);
int end = SkTMax(fSectorStart, fSectorEnd);
if (!crossesZero) {
fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
} else {
fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
}
}
SkOpSpan* SkOpAngle::starter() {
return fStart->starter(fEnd);
}
bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) {
if (s0xt0 == 0) {
return false;
}
// if the ctrl tangents are not nearly parallel, use them
// solve for opposite direction displacement scale factor == m
// initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
// displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
// straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
// v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
// - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
// m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
// m = v1.cross(v2) / v1.dot(v2)
const SkDVector* sweep = fPart.fSweep;
const SkDVector* tweep = rh->fPart.fSweep;
double s0dt0 = sweep[0].dot(tweep[0]);
if (!s0dt0) {
return true;
}
SkASSERT(s0dt0 != 0);
double m = s0xt0 / s0dt0;
double sDist = sweep[0].length() * m;
double tDist = tweep[0].length() * m;
bool useS = fabs(sDist) < fabs(tDist);
double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
fTangentsAmbiguous = mFactor >= 50 && mFactor < 200;
return mFactor < 50; // empirically found limit
}
|