1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkIntersections.h"
int SkIntersections::closestTo(double rangeStart, double rangeEnd, const SkDPoint& testPt,
double* closestDist) const {
int closest = -1;
*closestDist = SK_ScalarMax;
for (int index = 0; index < fUsed; ++index) {
if (!between(rangeStart, fT[0][index], rangeEnd)) {
continue;
}
const SkDPoint& iPt = fPt[index];
double dist = testPt.distanceSquared(iPt);
if (*closestDist > dist) {
*closestDist = dist;
closest = index;
}
}
return closest;
}
void SkIntersections::flip() {
for (int index = 0; index < fUsed; ++index) {
fT[1][index] = 1 - fT[1][index];
}
}
int SkIntersections::insert(double one, double two, const SkDPoint& pt) {
if (fIsCoincident[0] == 3 && between(fT[0][0], one, fT[0][1])) {
// For now, don't allow a mix of coincident and non-coincident intersections
return -1;
}
SkASSERT(fUsed <= 1 || fT[0][0] <= fT[0][1]);
int index;
for (index = 0; index < fUsed; ++index) {
double oldOne = fT[0][index];
double oldTwo = fT[1][index];
if (one == oldOne && two == oldTwo) {
return -1;
}
if (more_roughly_equal(oldOne, one) && more_roughly_equal(oldTwo, two)) {
if ((precisely_zero(one) && !precisely_zero(oldOne))
|| (precisely_equal(one, 1) && !precisely_equal(oldOne, 1))
|| (precisely_zero(two) && !precisely_zero(oldTwo))
|| (precisely_equal(two, 1) && !precisely_equal(oldTwo, 1))) {
SkASSERT(one >= 0 && one <= 1);
SkASSERT(two >= 0 && two <= 1);
fT[0][index] = one;
fT[1][index] = two;
fPt[index] = pt;
}
return -1;
}
#if ONE_OFF_DEBUG
if (pt.roughlyEqual(fPt[index])) {
SkDebugf("%s t=%1.9g pts roughly equal\n", __FUNCTION__, one);
}
#endif
if (fT[0][index] > one) {
break;
}
}
if (fUsed >= fMax) {
SkASSERT(0); // FIXME : this error, if it is to be handled at runtime in release, must
// be propagated all the way back down to the caller, and return failure.
fUsed = 0;
return 0;
}
int remaining = fUsed - index;
if (remaining > 0) {
memmove(&fPt[index + 1], &fPt[index], sizeof(fPt[0]) * remaining);
memmove(&fT[0][index + 1], &fT[0][index], sizeof(fT[0][0]) * remaining);
memmove(&fT[1][index + 1], &fT[1][index], sizeof(fT[1][0]) * remaining);
int clearMask = ~((1 << index) - 1);
fIsCoincident[0] += fIsCoincident[0] & clearMask;
fIsCoincident[1] += fIsCoincident[1] & clearMask;
}
fPt[index] = pt;
SkASSERT(one >= 0 && one <= 1);
SkASSERT(two >= 0 && two <= 1);
fT[0][index] = one;
fT[1][index] = two;
++fUsed;
SkASSERT(fUsed <= SK_ARRAY_COUNT(fPt));
return index;
}
void SkIntersections::insertNear(double one, double two, const SkDPoint& pt1, const SkDPoint& pt2) {
SkASSERT(one == 0 || one == 1);
SkASSERT(two == 0 || two == 1);
SkASSERT(pt1 != pt2);
fNearlySame[one ? 1 : 0] = true;
(void) insert(one, two, pt1);
fPt2[one ? 1 : 0] = pt2;
}
int SkIntersections::insertCoincident(double one, double two, const SkDPoint& pt) {
int index = insertSwap(one, two, pt);
if (index >= 0) {
setCoincident(index);
}
return index;
}
void SkIntersections::setCoincident(int index) {
SkASSERT(index >= 0);
int bit = 1 << index;
fIsCoincident[0] |= bit;
fIsCoincident[1] |= bit;
}
void SkIntersections::merge(const SkIntersections& a, int aIndex, const SkIntersections& b,
int bIndex) {
this->reset();
fT[0][0] = a.fT[0][aIndex];
fT[1][0] = b.fT[0][bIndex];
fPt[0] = a.fPt[aIndex];
fPt2[0] = b.fPt[bIndex];
fUsed = 1;
}
int SkIntersections::mostOutside(double rangeStart, double rangeEnd, const SkDPoint& origin) const {
int result = -1;
for (int index = 0; index < fUsed; ++index) {
if (!between(rangeStart, fT[0][index], rangeEnd)) {
continue;
}
if (result < 0) {
result = index;
continue;
}
SkDVector best = fPt[result] - origin;
SkDVector test = fPt[index] - origin;
if (test.crossCheck(best) < 0) {
result = index;
}
}
return result;
}
void SkIntersections::removeOne(int index) {
int remaining = --fUsed - index;
if (remaining <= 0) {
return;
}
memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining);
memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining);
memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining);
// SkASSERT(fIsCoincident[0] == 0);
int coBit = fIsCoincident[0] & (1 << index);
fIsCoincident[0] -= ((fIsCoincident[0] >> 1) & ~((1 << index) - 1)) + coBit;
SkASSERT(!(coBit ^ (fIsCoincident[1] & (1 << index))));
fIsCoincident[1] -= ((fIsCoincident[1] >> 1) & ~((1 << index) - 1)) + coBit;
}
|