aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkDQuadLineIntersection.cpp
blob: 5e3596ec208e6b436ae13514cbf4e4acf5f021c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkIntersections.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"

/*
Find the interection of a line and quadratic by solving for valid t values.

From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve

"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
A, B and C are points and t goes from zero to one.

This will give you two equations:

  x = a(1 - t)^2 + b(1 - t)t + ct^2
  y = d(1 - t)^2 + e(1 - t)t + ft^2

If you add for instance the line equation (y = kx + m) to that, you'll end up
with three equations and three unknowns (x, y and t)."

Similar to above, the quadratic is represented as
  x = a(1-t)^2 + 2b(1-t)t + ct^2
  y = d(1-t)^2 + 2e(1-t)t + ft^2
and the line as
  y = g*x + h

Using Mathematica, solve for the values of t where the quadratic intersects the
line:

  (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
  (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
         g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
  (in)  Solve[t1 == 0, t]
  (out) {
    {t -> (-2 d + 2 e +   2 a g - 2 b g    -
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         },
    {t -> (-2 d + 2 e +   2 a g - 2 b g    +
      Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
          4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
         (2 (-d + 2 e - f + a g - 2 b g    + c g))
         }
        }

Using the results above (when the line tends towards horizontal)
       A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
       B = 2*( (d -   e    ) - g*(a -   b    )     )
       C =   (-(d          ) + g*(a          ) + h )

If g goes to infinity, we can rewrite the line in terms of x.
  x = g'*y + h'

And solve accordingly in Mathematica:

  (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
                       d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
  (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
         g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
  (in)  Solve[t2 == 0, t]
  (out) {
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         },
    {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
    Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
          4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
         (2 (a - 2 b + c - d g' + 2 e g' - f g'))
         }
        }

Thus, if the slope of the line tends towards vertical, we use:
       A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
       B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
       C =   ( (a          ) - g'*(d           ) - h' )
 */

class LineQuadraticIntersections {
public:
    enum PinTPoint {
        kPointUninitialized,
        kPointInitialized
    };

    LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
        : fQuad(q)
        , fLine(&l)
        , fIntersections(i)
        , fAllowNear(true) {
        i->setMax(3);  // allow short partial coincidence plus discrete intersection
    }

    LineQuadraticIntersections(const SkDQuad& q)
        : fQuad(q) 
        SkDEBUGPARAMS(fLine(NULL))
        SkDEBUGPARAMS(fIntersections(NULL))
        SkDEBUGPARAMS(fAllowNear(false)) {
    }

    void allowNear(bool allow) {
        fAllowNear = allow;
    }

    void checkCoincident() {
        int last = fIntersections->used() - 1;
        for (int index = 0; index < last; ) {
            double quadMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
            SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
            double t = fLine->nearPoint(quadMidPt, NULL);
            if (t < 0) {
                ++index;
                continue;
            }
            if (fIntersections->isCoincident(index)) {
                fIntersections->removeOne(index);
                --last;
            } else if (fIntersections->isCoincident(index + 1)) {
                fIntersections->removeOne(index + 1);
                --last;
            } else {
                fIntersections->setCoincident(index++);
            }
            fIntersections->setCoincident(index);
        }
    }

    int intersectRay(double roots[2]) {
    /*
        solve by rotating line+quad so line is horizontal, then finding the roots
        set up matrix to rotate quad to x-axis
        |cos(a) -sin(a)|
        |sin(a)  cos(a)|
        note that cos(a) = A(djacent) / Hypoteneuse
                  sin(a) = O(pposite) / Hypoteneuse
        since we are computing Ts, we can ignore hypoteneuse, the scale factor:
        |  A     -O    |
        |  O      A    |
        A = line[1].fX - line[0].fX (adjacent side of the right triangle)
        O = line[1].fY - line[0].fY (opposite side of the right triangle)
        for each of the three points (e.g. n = 0 to 2)
        quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
    */
        double adj = (*fLine)[1].fX - (*fLine)[0].fX;
        double opp = (*fLine)[1].fY - (*fLine)[0].fY;
        double r[3];
        for (int n = 0; n < 3; ++n) {
            r[n] = (fQuad[n].fY - (*fLine)[0].fY) * adj - (fQuad[n].fX - (*fLine)[0].fX) * opp;
        }
        double A = r[2];
        double B = r[1];
        double C = r[0];
        A += C - 2 * B;  // A = a - 2*b + c
        B -= C;  // B = -(b - c)
        return SkDQuad::RootsValidT(A, 2 * B, C, roots);
    }

    int intersect() {
        addExactEndPoints();
        if (fAllowNear) {
            addNearEndPoints();
        }
        double rootVals[2];
        int roots = intersectRay(rootVals);
        for (int index = 0; index < roots; ++index) {
            double quadT = rootVals[index];
            double lineT = findLineT(quadT);
            SkDPoint pt;
            if (pinTs(&quadT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(quadT, pt)) {
                fIntersections->insert(quadT, lineT, pt);
            }
        }
        checkCoincident();
        return fIntersections->used();
    }

    int horizontalIntersect(double axisIntercept, double roots[2]) {
        double D = fQuad[2].fY;  // f
        double E = fQuad[1].fY;  // e
        double F = fQuad[0].fY;  // d
        D += F - 2 * E;         // D = d - 2*e + f
        E -= F;                 // E = -(d - e)
        F -= axisIntercept;
        return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    }

    int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
        addExactHorizontalEndPoints(left, right, axisIntercept);
        if (fAllowNear) {
            addNearHorizontalEndPoints(left, right, axisIntercept);
        }
        double rootVals[2];
        int roots = horizontalIntersect(axisIntercept, rootVals);
        for (int index = 0; index < roots; ++index) {
            double quadT = rootVals[index];
            SkDPoint pt = fQuad.ptAtT(quadT);
            double lineT = (pt.fX - left) / (right - left);
            if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
                fIntersections->insert(quadT, lineT, pt);
            }
        }
        if (flipped) {
            fIntersections->flip();
        }
        checkCoincident();
        return fIntersections->used();
    }

    bool uniqueAnswer(double quadT, const SkDPoint& pt) {
        for (int inner = 0; inner < fIntersections->used(); ++inner) {
            if (fIntersections->pt(inner) != pt) {
                continue;
            }
            double existingQuadT = (*fIntersections)[0][inner];
            if (quadT == existingQuadT) {
                return false;
            }
            // check if midway on quad is also same point. If so, discard this
            double quadMidT = (existingQuadT + quadT) / 2;
            SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
            if (quadMidPt.approximatelyEqual(pt)) {
                return false;
            }
        }
#if ONE_OFF_DEBUG
        SkDPoint qPt = fQuad.ptAtT(quadT);
        SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
                qPt.fX, qPt.fY);
#endif
        return true;
    }

    int verticalIntersect(double axisIntercept, double roots[2]) {
        double D = fQuad[2].fX;  // f
        double E = fQuad[1].fX;  // e
        double F = fQuad[0].fX;  // d
        D += F - 2 * E;         // D = d - 2*e + f
        E -= F;                 // E = -(d - e)
        F -= axisIntercept;
        return SkDQuad::RootsValidT(D, 2 * E, F, roots);
    }

    int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
        addExactVerticalEndPoints(top, bottom, axisIntercept);
        if (fAllowNear) {
            addNearVerticalEndPoints(top, bottom, axisIntercept);
        }
        double rootVals[2];
        int roots = verticalIntersect(axisIntercept, rootVals);
        for (int index = 0; index < roots; ++index) {
            double quadT = rootVals[index];
            SkDPoint pt = fQuad.ptAtT(quadT);
            double lineT = (pt.fY - top) / (bottom - top);
            if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
                fIntersections->insert(quadT, lineT, pt);
            }
        }
        if (flipped) {
            fIntersections->flip();
        }
        checkCoincident();
        return fIntersections->used();
    }

protected:
    // add endpoints first to get zero and one t values exactly
    void addExactEndPoints() {
        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
            double lineT = fLine->exactPoint(fQuad[qIndex]);
            if (lineT < 0) {
                continue;
            }
            double quadT = (double) (qIndex >> 1);
            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
        }
    }

    void addNearEndPoints() {
        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
            double quadT = (double) (qIndex >> 1);
            if (fIntersections->hasT(quadT)) {
                continue;
            }
            double lineT = fLine->nearPoint(fQuad[qIndex], NULL);
            if (lineT < 0) {
                continue;
            }
            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
        }
        // FIXME: see if line end is nearly on quad
    }

    void addExactHorizontalEndPoints(double left, double right, double y) {
        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
            double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
            if (lineT < 0) {
                continue;
            }
            double quadT = (double) (qIndex >> 1);
            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
        }
    }

    void addNearHorizontalEndPoints(double left, double right, double y) {
        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
            double quadT = (double) (qIndex >> 1);
            if (fIntersections->hasT(quadT)) {
                continue;
            }
            double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
            if (lineT < 0) {
                continue;
            }
            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
        }
        // FIXME: see if line end is nearly on quad
    }

    void addExactVerticalEndPoints(double top, double bottom, double x) {
        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
            double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
            if (lineT < 0) {
                continue;
            }
            double quadT = (double) (qIndex >> 1);
            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
        }
    }

    void addNearVerticalEndPoints(double top, double bottom, double x) {
        for (int qIndex = 0; qIndex < 3; qIndex += 2) {
            double quadT = (double) (qIndex >> 1);
            if (fIntersections->hasT(quadT)) {
                continue;
            }
            double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
            if (lineT < 0) {
                continue;
            }
            fIntersections->insert(quadT, lineT, fQuad[qIndex]);
        }
        // FIXME: see if line end is nearly on quad
    }

    double findLineT(double t) {
        SkDPoint xy = fQuad.ptAtT(t);
        double dx = (*fLine)[1].fX - (*fLine)[0].fX;
        double dy = (*fLine)[1].fY - (*fLine)[0].fY;
        if (fabs(dx) > fabs(dy)) {
            return (xy.fX - (*fLine)[0].fX) / dx;
        }
        return (xy.fY - (*fLine)[0].fY) / dy;
    }

    bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
        if (!approximately_one_or_less_double(*lineT)) {
            return false;
        }
        if (!approximately_zero_or_more_double(*lineT)) {
            return false;
        }
        double qT = *quadT = SkPinT(*quadT);
        double lT = *lineT = SkPinT(*lineT);
        if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
            *pt = (*fLine).ptAtT(lT);
        } else if (ptSet == kPointUninitialized) {
            *pt = fQuad.ptAtT(qT);
        }
        SkPoint gridPt = pt->asSkPoint();
        if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) {
            *pt = (*fLine)[0];
            *lineT = 0;
        } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) {
            *pt = (*fLine)[1];
            *lineT = 1;
        }
        if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) {
            return false;
        }
        if (gridPt == fQuad[0].asSkPoint()) {
            *pt = fQuad[0];
            *quadT = 0;
        } else if (gridPt == fQuad[2].asSkPoint()) {
            *pt = fQuad[2];
            *quadT = 1;
        }
        return true;
    }

private:
    const SkDQuad& fQuad;
    const SkDLine* fLine;
    SkIntersections* fIntersections;
    bool fAllowNear;
};

int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
                                bool flipped) {
    SkDLine line = {{{ left, y }, { right, y }}};
    LineQuadraticIntersections q(quad, line, this);
    return q.horizontalIntersect(y, left, right, flipped);
}

int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
                              bool flipped) {
    SkDLine line = {{{ x, top }, { x, bottom }}};
    LineQuadraticIntersections q(quad, line, this);
    return q.verticalIntersect(x, top, bottom, flipped);
}

int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
    LineQuadraticIntersections q(quad, line, this);
    q.allowNear(fAllowNear);
    return q.intersect();
}

int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
    LineQuadraticIntersections q(quad, line, this);
    fUsed = q.intersectRay(fT[0]);
    for (int index = 0; index < fUsed; ++index) {
        fPt[index] = quad.ptAtT(fT[0][index]);
    }
    return fUsed;
}

int SkIntersections::HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots) {
    LineQuadraticIntersections q(quad);
    return q.horizontalIntersect(y, roots);
}

int SkIntersections::VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots) {
    LineQuadraticIntersections q(quad);
    return q.verticalIntersect(x, roots);
}