aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkDLineIntersection.cpp
blob: b209474066bde4865da3e2fa27e1c6a004c265c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkIntersections.h"
#include "SkPathOpsLine.h"

/* Determine the intersection point of two lines. This assumes the lines are not parallel,
   and that that the lines are infinite.
   From http://en.wikipedia.org/wiki/Line-line_intersection
 */
SkDPoint SkIntersections::Line(const SkDLine& a, const SkDLine& b) {
    double axLen = a[1].fX - a[0].fX;
    double ayLen = a[1].fY - a[0].fY;
    double bxLen = b[1].fX - b[0].fX;
    double byLen = b[1].fY - b[0].fY;
    double denom = byLen * axLen - ayLen * bxLen;
    SkASSERT(denom);
    double term1 = a[1].fX * a[0].fY - a[1].fY * a[0].fX;
    double term2 = b[1].fX * b[0].fY - b[1].fY * b[0].fX;
    SkDPoint p;
    p.fX = (term1 * bxLen - axLen * term2) / denom;
    p.fY = (term1 * byLen - ayLen * term2) / denom;
    return p;
}

void SkIntersections::cleanUpCoincidence() {
    SkASSERT(fUsed == 2);
    // both t values are good
    bool startMatch = fT[0][0] == 0 && (fT[1][0] == 0 || fT[1][0] == 1);
    bool endMatch = fT[0][1] == 1 && (fT[1][1] == 0 || fT[1][1] == 1);
    if (startMatch || endMatch) {
        removeOne(startMatch);
        return;
    }
    // either t value is good
    bool pStartMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1;
    bool pEndMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1;
    removeOne(pStartMatch || !pEndMatch);
}

void SkIntersections::cleanUpParallelLines(bool parallel) {
    while (fUsed > 2) {
        removeOne(1);
    }
    if (fUsed == 2 && !parallel) {
        bool startMatch = fT[0][0] == 0 || fT[1][0] == 0 || fT[1][0] == 1;
        bool endMatch = fT[0][1] == 1 || fT[1][1] == 0 || fT[1][1] == 1;
        if ((!startMatch && !endMatch) || approximately_equal(fT[0][0], fT[0][1])) {
            SkASSERT(startMatch || endMatch);
            removeOne(endMatch);
        }
    }
}

void SkIntersections::computePoints(const SkDLine& line, int used) {
    fPt[0] = line.ptAtT(fT[0][0]);
    if ((fUsed = used) == 2) {
        fPt[1] = line.ptAtT(fT[0][1]);
    }
}

int SkIntersections::intersectRay(const SkDLine& a, const SkDLine& b) {
    fMax = 2;
    SkDVector aLen = a[1] - a[0];
    SkDVector bLen = b[1] - b[0];
    /* Slopes match when denom goes to zero:
                      axLen / ayLen ==                   bxLen / byLen
    (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
             byLen  * axLen         ==  ayLen          * bxLen
             byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
     */
    double denom = bLen.fY * aLen.fX - aLen.fY * bLen.fX;
    SkDVector ab0 = a[0] - b[0];
    double numerA = ab0.fY * bLen.fX - bLen.fY * ab0.fX;
    double numerB = ab0.fY * aLen.fX - aLen.fY * ab0.fX;
#if 0
    if (!between(0, numerA, denom) || !between(0, numerB, denom)) {
        fUsed = 0;
        return 0;
    }
#endif
    numerA /= denom;
    numerB /= denom;
    int used;
    if (!approximately_zero(denom)) {
        fT[0][0] = numerA;
        fT[1][0] = numerB;
        used = 1;
    } else {
       /* See if the axis intercepts match:
                  ay - ax * ayLen / axLen  ==          by - bx * ayLen / axLen
         axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
         axLen *  ay - ax * ayLen          == axLen *  by - bx * ayLen
        */
        if (!AlmostEqualUlps(aLen.fX * a[0].fY - aLen.fY * a[0].fX,
                aLen.fX * b[0].fY - aLen.fY * b[0].fX)) {
            return fUsed = 0;
        }
        // there's no great answer for intersection points for coincident rays, but return something
        fT[0][0] = fT[1][0] = 0;
        fT[1][0] = fT[1][1] = 1;
        used = 2;
    }
    computePoints(a, used);
    return fUsed;
}

// note that this only works if both lines are neither horizontal nor vertical
int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
    fMax = 3;  // note that we clean up so that there is no more than two in the end
    // see if end points intersect the opposite line
    double t;
    for (int iA = 0; iA < 2; ++iA) {
        if ((t = b.exactPoint(a[iA])) >= 0) {
            insert(iA, t, a[iA]);
        }
    }
    for (int iB = 0; iB < 2; ++iB) {
        if ((t = a.exactPoint(b[iB])) >= 0) {
            insert(t, iB, b[iB]);
        }
    }
    /* Determine the intersection point of two line segments
       Return FALSE if the lines don't intersect
       from: http://paulbourke.net/geometry/lineline2d/ */
    double axLen = a[1].fX - a[0].fX;
    double ayLen = a[1].fY - a[0].fY;
    double bxLen = b[1].fX - b[0].fX;
    double byLen = b[1].fY - b[0].fY;
    /* Slopes match when denom goes to zero:
                      axLen / ayLen ==                   bxLen / byLen
    (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
             byLen  * axLen         ==  ayLen          * bxLen
             byLen  * axLen         -   ayLen          * bxLen == 0 ( == denom )
     */
    double axByLen = axLen * byLen;
    double ayBxLen = ayLen * bxLen;
    // detect parallel lines the same way here and in SkOpAngle operator <
    // so that non-parallel means they are also sortable
    bool unparallel = fAllowNear ? NotAlmostEqualUlps(axByLen, ayBxLen)
            : NotAlmostDequalUlps(axByLen, ayBxLen);
    if (unparallel && fUsed == 0) {
        double ab0y = a[0].fY - b[0].fY;
        double ab0x = a[0].fX - b[0].fX;
        double numerA = ab0y * bxLen - byLen * ab0x;
        double numerB = ab0y * axLen - ayLen * ab0x;
        double denom = axByLen - ayBxLen;
        if (between(0, numerA, denom) && between(0, numerB, denom)) {
            fT[0][0] = numerA / denom;
            fT[1][0] = numerB / denom;
            computePoints(a, 1);
        }
    }
/* Allow tracking that both sets of end points are near each other -- the lines are entirely 
   coincident -- even when the end points are not exactly the same.
   Mark this as a 'wild card' for the end points, so that either point is considered totally
   coincident. Then, avoid folding the lines over each other, but allow either end to mate 
   to the next set of lines.
 */
    if (fAllowNear || !unparallel) {
        double aNearB[2];
        double bNearA[2];
        bool aNotB[2] = {false, false};
        bool bNotA[2] = {false, false};
        int nearCount = 0;
        for (int index = 0; index < 2; ++index) {
            aNearB[index] = t = b.nearPoint(a[index], &aNotB[index]);
            nearCount += t >= 0;
            bNearA[index] = t = a.nearPoint(b[index], &bNotA[index]);
            nearCount += t >= 0;
        }
        if (nearCount > 0) {
            // Skip if each segment contributes to one end point.
            if (nearCount != 2 || aNotB[0] == aNotB[1]) {
                for (int iA = 0; iA < 2; ++iA) {
                    if (!aNotB[iA]) {
                        continue;
                    }
                    int nearer = aNearB[iA] > 0.5;
                    if (!bNotA[nearer]) {
                        continue;
                    }
                    SkASSERT(a[iA] != b[nearer]);
                    SkASSERT(iA == (bNearA[nearer] > 0.5));
                    fNearlySame[iA] = true;
                    insertNear(iA, nearer, a[iA], b[nearer]);
                    aNearB[iA] = -1;
                    bNearA[nearer] = -1;
                    nearCount -= 2;
                }
            }
            if (nearCount > 0) {
                for (int iA = 0; iA < 2; ++iA) {
                    if (aNearB[iA] >= 0) {
                        insert(iA, aNearB[iA], a[iA]);
                    }
                }
                for (int iB = 0; iB < 2; ++iB) {
                    if (bNearA[iB] >= 0) {
                        insert(bNearA[iB], iB, b[iB]);
                    }
                }
            }
        }
    }
    cleanUpParallelLines(!unparallel);
    SkASSERT(fUsed <= 2);
    return fUsed;
}

static int horizontal_coincident(const SkDLine& line, double y) {
    double min = line[0].fY;
    double max = line[1].fY;
    if (min > max) {
        SkTSwap(min, max);
    }
    if (min > y || max < y) {
        return 0;
    }
    if (AlmostEqualUlps(min, max) && max - min < fabs(line[0].fX - line[1].fX)) {
        return 2;
    }
    return 1;
}

static double horizontal_intercept(const SkDLine& line, double y) {
     return SkPinT((y - line[0].fY) / (line[1].fY - line[0].fY));
}

int SkIntersections::horizontal(const SkDLine& line, double y) {
    fMax = 2;
    int horizontalType = horizontal_coincident(line, y);
    if (horizontalType == 1) {
        fT[0][0] = horizontal_intercept(line, y);
    } else if (horizontalType == 2) {
        fT[0][0] = 0;
        fT[0][1] = 1;
    }
    return fUsed = horizontalType;
}

int SkIntersections::horizontal(const SkDLine& line, double left, double right,
                                double y, bool flipped) {
    fMax = 3;  // clean up parallel at the end will limit the result to 2 at the most
    // see if end points intersect the opposite line
    double t;
    const SkDPoint leftPt = { left, y };
    if ((t = line.exactPoint(leftPt)) >= 0) {
        insert(t, (double) flipped, leftPt);
    }
    if (left != right) {
        const SkDPoint rightPt = { right, y };
        if ((t = line.exactPoint(rightPt)) >= 0) {
            insert(t, (double) !flipped, rightPt);
        }
        for (int index = 0; index < 2; ++index) {
            if ((t = SkDLine::ExactPointH(line[index], left, right, y)) >= 0) {
                insert((double) index, flipped ? 1 - t : t, line[index]);
            }
        }
    }
    int result = horizontal_coincident(line, y);
    if (result == 1 && fUsed == 0) {
        fT[0][0] = horizontal_intercept(line, y);
        double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
        if (between(left, xIntercept, right)) {
            fT[1][0] = (xIntercept - left) / (right - left);
            if (flipped) {
                // OPTIMIZATION: ? instead of swapping, pass original line, use [1].fX - [0].fX
                for (int index = 0; index < result; ++index) {
                    fT[1][index] = 1 - fT[1][index];
                }
            }
            fPt[0].fX = xIntercept;
            fPt[0].fY = y;
            fUsed = 1;
        }
    }
    if (fAllowNear || result == 2) {
        if ((t = line.nearPoint(leftPt, NULL)) >= 0) {
            insert(t, (double) flipped, leftPt);
        }
        if (left != right) {
            const SkDPoint rightPt = { right, y };
            if ((t = line.nearPoint(rightPt, NULL)) >= 0) {
                insert(t, (double) !flipped, rightPt);
            }
            for (int index = 0; index < 2; ++index) {
                if ((t = SkDLine::NearPointH(line[index], left, right, y)) >= 0) {
                    insert((double) index, flipped ? 1 - t : t, line[index]);
                }
            }
        }
    }
    cleanUpParallelLines(result == 2);
    return fUsed;
}

static int vertical_coincident(const SkDLine& line, double x) {
    double min = line[0].fX;
    double max = line[1].fX;
    if (min > max) {
        SkTSwap(min, max);
    }
    if (!precisely_between(min, x, max)) {
        return 0;
    }
    if (AlmostEqualUlps(min, max)) {
        return 2;
    }
    return 1;
}

static double vertical_intercept(const SkDLine& line, double x) {
    return SkPinT((x - line[0].fX) / (line[1].fX - line[0].fX));
}

int SkIntersections::vertical(const SkDLine& line, double x) {
    fMax = 2;
    int verticalType = vertical_coincident(line, x);
    if (verticalType == 1) {
        fT[0][0] = vertical_intercept(line, x);
    } else if (verticalType == 2) {
        fT[0][0] = 0;
        fT[0][1] = 1;
    }
    return fUsed = verticalType;
}

int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
                              double x, bool flipped) {
    fMax = 3;  // cleanup parallel lines will bring this back line
    // see if end points intersect the opposite line
    double t;
    SkDPoint topPt = { x, top };
    if ((t = line.exactPoint(topPt)) >= 0) {
        insert(t, (double) flipped, topPt);
    }
    if (top != bottom) {
        SkDPoint bottomPt = { x, bottom };
        if ((t = line.exactPoint(bottomPt)) >= 0) {
            insert(t, (double) !flipped, bottomPt);
        }
        for (int index = 0; index < 2; ++index) {
            if ((t = SkDLine::ExactPointV(line[index], top, bottom, x)) >= 0) {
                insert((double) index, flipped ? 1 - t : t, line[index]);
            }
        }
    }
    int result = vertical_coincident(line, x);
    if (result == 1 && fUsed == 0) {
        fT[0][0] = vertical_intercept(line, x);
        double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
        if (between(top, yIntercept, bottom)) {
            fT[1][0] = (yIntercept - top) / (bottom - top);
            if (flipped) {
                // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
                for (int index = 0; index < result; ++index) {
                    fT[1][index] = 1 - fT[1][index];
                }
            }
            fPt[0].fX = x;
            fPt[0].fY = yIntercept;
            fUsed = 1;
        }
    }
    if (fAllowNear || result == 2) {
        if ((t = line.nearPoint(topPt, NULL)) >= 0) {
            insert(t, (double) flipped, topPt);
        }
        if (top != bottom) {
            SkDPoint bottomPt = { x, bottom };
            if ((t = line.nearPoint(bottomPt, NULL)) >= 0) {
                insert(t, (double) !flipped, bottomPt);
            }
            for (int index = 0; index < 2; ++index) {
                if ((t = SkDLine::NearPointV(line[index], top, bottom, x)) >= 0) {
                    insert((double) index, flipped ? 1 - t : t, line[index]);
                }
            }
        }
    }
    cleanUpParallelLines(result == 2);
    SkASSERT(fUsed <= 2);
    return fUsed;
}

// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
// 4 subs, 2 muls, 1 cmp
static bool ccw(const SkDPoint& A, const SkDPoint& B, const SkDPoint& C) {
    return (C.fY - A.fY) * (B.fX - A.fX) > (B.fY - A.fY) * (C.fX - A.fX);
}

// 16 subs, 8 muls, 6 cmps
bool SkIntersections::Test(const SkDLine& a, const SkDLine& b) {
    return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
            && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
}