aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkDCubicToQuads.cpp
blob: 571f1d94ae293dd2577446f6e61515677e08a26a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*
http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
*/

/*
Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
Then for degree elevation, the equations are:

Q0 = P0
Q1 = 1/3 P0 + 2/3 P1
Q2 = 2/3 P1 + 1/3 P2
Q3 = P2
In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
 the equations above:

P1 = 3/2 Q1 - 1/2 Q0
P1 = 3/2 Q2 - 1/2 Q3
If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
 it's likely not, your best bet is to average them. So,

P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3


SkDCubic defined by: P1/2 - anchor points, C1/C2 control points
|x| is the euclidean norm of x
mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
 control point at C = (3·C2 - P2 + 3·C1 - P1)/4

Algorithm

pick an absolute precision (prec)
Compute the Tdiv as the root of (cubic) equation
sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
 quadratic, with a defect less than prec, by the mid-point approximation.
 Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
 approximation
Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation

confirmed by (maybe stolen from)
http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
// maybe in turn derived from  http://www.cccg.ca/proceedings/2004/36.pdf
// also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf

*/

#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkReduceOrder.h"
#include "SkTArray.h"
#include "SkTSort.h"

#define USE_CUBIC_END_POINTS 1

static double calc_t_div(const SkDCubic& cubic, double precision, double start) {
    const double adjust = sqrt(3.) / 36;
    SkDCubic sub;
    const SkDCubic* cPtr;
    if (start == 0) {
        cPtr = &cubic;
    } else {
        // OPTIMIZE: special-case half-split ?
        sub = cubic.subDivide(start, 1);
        cPtr = &sub;
    }
    const SkDCubic& c = *cPtr;
    double dx = c[3].fX - 3 * (c[2].fX - c[1].fX) - c[0].fX;
    double dy = c[3].fY - 3 * (c[2].fY - c[1].fY) - c[0].fY;
    double dist = sqrt(dx * dx + dy * dy);
    double tDiv3 = precision / (adjust * dist);
    double t = SkDCubeRoot(tDiv3);
    if (start > 0) {
        t = start + (1 - start) * t;
    }
    return t;
}

SkDQuad SkDCubic::toQuad() const {
    SkDQuad quad;
    quad[0] = fPts[0];
    const SkDPoint fromC1 = {(3 * fPts[1].fX - fPts[0].fX) / 2, (3 * fPts[1].fY - fPts[0].fY) / 2};
    const SkDPoint fromC2 = {(3 * fPts[2].fX - fPts[3].fX) / 2, (3 * fPts[2].fY - fPts[3].fY) / 2};
    quad[1].fX = (fromC1.fX + fromC2.fX) / 2;
    quad[1].fY = (fromC1.fY + fromC2.fY) / 2;
    quad[2] = fPts[3];
    return quad;
}

static bool add_simple_ts(const SkDCubic& cubic, double precision, SkTArray<double, true>* ts) {
    double tDiv = calc_t_div(cubic, precision, 0);
    if (tDiv >= 1) {
        return true;
    }
    if (tDiv >= 0.5) {
        ts->push_back(0.5);
        return true;
    }
    return false;
}

static void addTs(const SkDCubic& cubic, double precision, double start, double end,
        SkTArray<double, true>* ts) {
    double tDiv = calc_t_div(cubic, precision, 0);
    double parts = ceil(1.0 / tDiv);
    for (double index = 0; index < parts; ++index) {
        double newT = start + (index / parts) * (end - start);
        if (newT > 0 && newT < 1) {
            ts->push_back(newT);
        }
    }
}

// flavor that returns T values only, deferring computing the quads until they are needed
// FIXME: when called from recursive intersect 2, this could take the original cubic
// and do a more precise job when calling chop at and sub divide by computing the fractional ts.
// it would still take the prechopped cubic for reduce order and find cubic inflections
void SkDCubic::toQuadraticTs(double precision, SkTArray<double, true>* ts) const {
    SkReduceOrder reducer;
    int order = reducer.reduce(*this, SkReduceOrder::kAllow_Quadratics, SkReduceOrder::kFill_Style);
    if (order < 3) {
        return;
    }
    double inflectT[5];
    int inflections = findInflections(inflectT);
    SkASSERT(inflections <= 2);
    if (!endsAreExtremaInXOrY()) {
        inflections += findMaxCurvature(&inflectT[inflections]);
        SkASSERT(inflections <= 5);
    }
    SkTQSort<double>(inflectT, &inflectT[inflections - 1]);
    // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
    // own subroutine?
    while (inflections && approximately_less_than_zero(inflectT[0])) {
        memmove(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
    }
    int start = 0;
    do {
        int next = start + 1;
        if (next >= inflections) {
            break;
        }
        if (!approximately_equal(inflectT[start], inflectT[next])) {
            ++start;
            continue;
        }
        memmove(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
    } while (true);
    while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
        --inflections;
    }
    SkDCubicPair pair;
    if (inflections == 1) {
        pair = chopAt(inflectT[0]);
        int orderP1 = reducer.reduce(pair.first(), SkReduceOrder::kNo_Quadratics,
                SkReduceOrder::kFill_Style);
        if (orderP1 < 2) {
            --inflections;
        } else {
            int orderP2 = reducer.reduce(pair.second(), SkReduceOrder::kNo_Quadratics,
                    SkReduceOrder::kFill_Style);
            if (orderP2 < 2) {
                --inflections;
            }
        }
    }
    if (inflections == 0 && add_simple_ts(*this, precision, ts)) {
        return;
    }
    if (inflections == 1) {
        pair = chopAt(inflectT[0]);
        addTs(pair.first(), precision, 0, inflectT[0], ts);
        addTs(pair.second(), precision, inflectT[0], 1, ts);
        return;
    }
    if (inflections > 1) {
        SkDCubic part = subDivide(0, inflectT[0]);
        addTs(part, precision, 0, inflectT[0], ts);
        int last = inflections - 1;
        for (int idx = 0; idx < last; ++idx) {
            part = subDivide(inflectT[idx], inflectT[idx + 1]);
            addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
        }
        part = subDivide(inflectT[last], 1);
        addTs(part, precision, inflectT[last], 1, ts);
        return;
    }
    addTs(*this, precision, 0, 1, ts);
}