aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkDCubicLineIntersection.cpp
blob: 11876f8d7356debebc8da391fa8c4ea8a2fd2f18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"

/*
Find the interection of a line and cubic by solving for valid t values.

Analogous to line-quadratic intersection, solve line-cubic intersection by
representing the cubic as:
  x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
  y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
and the line as:
  y = i*x + j  (if the line is more horizontal)
or:
  x = i*y + j  (if the line is more vertical)

Then using Mathematica, solve for the values of t where the cubic intersects the
line:

  (in) Resultant[
        a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
        e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
  (out) -e     +   j     +
       3 e t   - 3 f t   -
       3 e t^2 + 6 f t^2 - 3 g t^2 +
         e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
     i ( a     -
       3 a t + 3 b t +
       3 a t^2 - 6 b t^2 + 3 c t^2 -
         a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )

if i goes to infinity, we can rewrite the line in terms of x. Mathematica:

  (in) Resultant[
        a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
        e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
  (out)  a     -   j     -
       3 a t   + 3 b t   +
       3 a t^2 - 6 b t^2 + 3 c t^2 -
         a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
     i ( e     -
       3 e t   + 3 f t   +
       3 e t^2 - 6 f t^2 + 3 g t^2 -
         e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )

Solving this with Mathematica produces an expression with hundreds of terms;
instead, use Numeric Solutions recipe to solve the cubic.

The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
    A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
    B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
    C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
    D =   (-( e                ) + i*( a                ) + j )

The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
    A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
    B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
    C = 3*( (-a +   b          ) - i*(-e +   f          )     )
    D =   ( ( a                ) - i*( e                ) - j )

For horizontal lines:
(in) Resultant[
      a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
      e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out)  e     -   j     -
     3 e t   + 3 f t   +
     3 e t^2 - 6 f t^2 + 3 g t^2 -
       e t^3 + 3 f t^3 - 3 g t^3 + h t^3
 */

class LineCubicIntersections {
public:

LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections& i)
    : cubic(c)
    , line(l)
    , intersections(i) {
}

// see parallel routine in line quadratic intersections
int intersectRay(double roots[3]) {
    double adj = line[1].fX - line[0].fX;
    double opp = line[1].fY - line[0].fY;
    SkDCubic r;
    for (int n = 0; n < 4; ++n) {
        r[n].fX = (cubic[n].fY - line[0].fY) * adj - (cubic[n].fX - line[0].fX) * opp;
    }
    double A, B, C, D;
    SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
    return SkDCubic::RootsValidT(A, B, C, D, roots);
}

int intersect() {
    addEndPoints();
    double rootVals[3];
    int roots = intersectRay(rootVals);
    for (int index = 0; index < roots; ++index) {
        double cubicT = rootVals[index];
        double lineT = findLineT(cubicT);
        if (pinTs(&cubicT, &lineT)) {
            SkDPoint pt = line.xyAtT(lineT);
            intersections.insert(cubicT, lineT, pt);
        }
    }
    return intersections.used();
}

int horizontalIntersect(double axisIntercept, double roots[3]) {
    double A, B, C, D;
    SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
    D -= axisIntercept;
    return SkDCubic::RootsValidT(A, B, C, D, roots);
}

int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
    addHorizontalEndPoints(left, right, axisIntercept);
    double rootVals[3];
    int roots = horizontalIntersect(axisIntercept, rootVals);
    for (int index = 0; index < roots; ++index) {
        double cubicT = rootVals[index];
        SkDPoint pt = cubic.xyAtT(cubicT);
        double lineT = (pt.fX - left) / (right - left);
        if (pinTs(&cubicT, &lineT)) {
            intersections.insert(cubicT, lineT, pt);
        }
    }
    if (flipped) {
        intersections.flip();
    }
    return intersections.used();
}

int verticalIntersect(double axisIntercept, double roots[3]) {
    double A, B, C, D;
    SkDCubic::Coefficients(&cubic[0].fX, &A, &B, &C, &D);
    D -= axisIntercept;
    return SkDCubic::RootsValidT(A, B, C, D, roots);
}

int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
    addVerticalEndPoints(top, bottom, axisIntercept);
    double rootVals[3];
    int roots = verticalIntersect(axisIntercept, rootVals);
    for (int index = 0; index < roots; ++index) {
        double cubicT = rootVals[index];
        SkDPoint pt = cubic.xyAtT(cubicT);
        double lineT = (pt.fY - top) / (bottom - top);
        if (pinTs(&cubicT, &lineT)) {
            intersections.insert(cubicT, lineT, pt);
        }
    }
    if (flipped) {
        intersections.flip();
    }
    return intersections.used();
}

protected:

void addEndPoints() {
    for (int cIndex = 0; cIndex < 4; cIndex += 3) {
        for (int lIndex = 0; lIndex < 2; lIndex++) {
            if (cubic[cIndex] == line[lIndex]) {
                intersections.insert(cIndex >> 1, lIndex, line[lIndex]);
            }
        }
    }
}

void addHorizontalEndPoints(double left, double right, double y) {
    for (int cIndex = 0; cIndex < 4; cIndex += 3) {
        if (cubic[cIndex].fY != y) {
            continue;
        }
        if (cubic[cIndex].fX == left) {
            intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
        }
        if (cubic[cIndex].fX == right) {
            intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
        }
    }
}

void addVerticalEndPoints(double top, double bottom, double x) {
    for (int cIndex = 0; cIndex < 4; cIndex += 3) {
        if (cubic[cIndex].fX != x) {
            continue;
        }
        if (cubic[cIndex].fY == top) {
            intersections.insert(cIndex >> 1, 0, cubic[cIndex]);
        }
        if (cubic[cIndex].fY == bottom) {
            intersections.insert(cIndex >> 1, 1, cubic[cIndex]);
        }
    }
}

double findLineT(double t) {
    SkDPoint xy = cubic.xyAtT(t);
    double dx = line[1].fX - line[0].fX;
    double dy = line[1].fY - line[0].fY;
    if (fabs(dx) > fabs(dy)) {
        return (xy.fX - line[0].fX) / dx;
    }
    return (xy.fY - line[0].fY) / dy;
}

static bool pinTs(double* cubicT, double* lineT) {
    if (!approximately_one_or_less(*lineT)) {
        return false;
    }
    if (!approximately_zero_or_more(*lineT)) {
        return false;
    }
    if (precisely_less_than_zero(*cubicT)) {
        *cubicT = 0;
    } else if (precisely_greater_than_one(*cubicT)) {
        *cubicT = 1;
    }
    if (precisely_less_than_zero(*lineT)) {
        *lineT = 0;
    } else if (precisely_greater_than_one(*lineT)) {
        *lineT = 1;
    }
    return true;
}

private:

const SkDCubic& cubic;
const SkDLine& line;
SkIntersections& intersections;
};

int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
        bool flipped) {
    LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
    return c.horizontalIntersect(y, left, right, flipped);
}

int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
        bool flipped) {
    LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
    return c.verticalIntersect(x, top, bottom, flipped);
}

int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
    LineCubicIntersections c(cubic, line, *this);
    return c.intersect();
}

int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
    LineCubicIntersections c(cubic, line, *this);
    fUsed = c.intersectRay(fT[0]);
    for (int index = 0; index < fUsed; ++index) {
        fPt[index] = cubic.xyAtT(fT[0][index]);
    }
    return fUsed;
}