aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkDCubicLineIntersection.cpp
blob: cbdce7789a800964d699393c0ec8d29f1b2951f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"

/*
Find the interection of a line and cubic by solving for valid t values.

Analogous to line-quadratic intersection, solve line-cubic intersection by
representing the cubic as:
  x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
  y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
and the line as:
  y = i*x + j  (if the line is more horizontal)
or:
  x = i*y + j  (if the line is more vertical)

Then using Mathematica, solve for the values of t where the cubic intersects the
line:

  (in) Resultant[
        a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
        e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
  (out) -e     +   j     +
       3 e t   - 3 f t   -
       3 e t^2 + 6 f t^2 - 3 g t^2 +
         e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
     i ( a     -
       3 a t + 3 b t +
       3 a t^2 - 6 b t^2 + 3 c t^2 -
         a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )

if i goes to infinity, we can rewrite the line in terms of x. Mathematica:

  (in) Resultant[
        a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
        e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y,       y]
  (out)  a     -   j     -
       3 a t   + 3 b t   +
       3 a t^2 - 6 b t^2 + 3 c t^2 -
         a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
     i ( e     -
       3 e t   + 3 f t   +
       3 e t^2 - 6 f t^2 + 3 g t^2 -
         e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )

Solving this with Mathematica produces an expression with hundreds of terms;
instead, use Numeric Solutions recipe to solve the cubic.

The near-horizontal case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
    A =   (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d)     )
    B = 3*(-( e - 2*f +   g    ) + i*( a - 2*b +   c    )     )
    C = 3*(-(-e +   f          ) + i*(-a +   b          )     )
    D =   (-( e                ) + i*( a                ) + j )

The near-vertical case, in terms of:  Ax^3 + Bx^2 + Cx + D == 0
    A =   ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h)     )
    B = 3*( ( a - 2*b +   c    ) - i*( e - 2*f +   g    )     )
    C = 3*( (-a +   b          ) - i*(-e +   f          )     )
    D =   ( ( a                ) - i*( e                ) - j )

For horizontal lines:
(in) Resultant[
      a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
      e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out)  e     -   j     -
     3 e t   + 3 f t   +
     3 e t^2 - 6 f t^2 + 3 g t^2 -
       e t^3 + 3 f t^3 - 3 g t^3 + h t^3
 */

class LineCubicIntersections {
public:
    enum PinTPoint {
        kPointUninitialized,
        kPointInitialized
    };

    LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections* i)
        : fCubic(c)
        , fLine(l)
        , fIntersections(i)
        , fAllowNear(true) {
        i->setMax(3);
    }

    void allowNear(bool allow) {
        fAllowNear = allow;
    }

    void checkCoincident() {
        int last = fIntersections->used() - 1;
        for (int index = 0; index < last; ) {
            double cubicMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
            SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
            double t = fLine.nearPoint(cubicMidPt, nullptr);
            if (t < 0) {
                ++index;
                continue;
            }
            if (fIntersections->isCoincident(index)) {
                fIntersections->removeOne(index);
                --last;
            } else if (fIntersections->isCoincident(index + 1)) {
                fIntersections->removeOne(index + 1);
                --last;
            } else {
                fIntersections->setCoincident(index++);
            }
            fIntersections->setCoincident(index);
        }
    }

    // see parallel routine in line quadratic intersections
    int intersectRay(double roots[3]) {
        double adj = fLine[1].fX - fLine[0].fX;
        double opp = fLine[1].fY - fLine[0].fY;
        SkDCubic c;
        for (int n = 0; n < 4; ++n) {
            c[n].fX = (fCubic[n].fY - fLine[0].fY) * adj - (fCubic[n].fX - fLine[0].fX) * opp;
        }
        double A, B, C, D;
        SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
        for (int index = 0; index < count; ++index) {
            SkDPoint calcPt = c.ptAtT(roots[index]);
            if (!approximately_zero(calcPt.fX)) {
                for (int n = 0; n < 4; ++n) {
                    c[n].fY = (fCubic[n].fY - fLine[0].fY) * opp
                            + (fCubic[n].fX - fLine[0].fX) * adj;
                }
                double extremeTs[6];
                int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
                count = c.searchRoots(extremeTs, extrema, 0, SkDCubic::kXAxis, roots);
                break;
            }
        }
        return count;
    }

    int intersect() {
        addExactEndPoints();
        if (fAllowNear) {
            addNearEndPoints();
        }
        double rootVals[3];
        int roots = intersectRay(rootVals);
        for (int index = 0; index < roots; ++index) {
            double cubicT = rootVals[index];
            double lineT = findLineT(cubicT);
            SkDPoint pt;
            if (pinTs(&cubicT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(cubicT, pt)) {
                fIntersections->insert(cubicT, lineT, pt);
            }
        }
        checkCoincident();
        return fIntersections->used();
    }

    static int HorizontalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
        double A, B, C, D;
        SkDCubic::Coefficients(&c[0].fY, &A, &B, &C, &D);
        D -= axisIntercept;
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
        for (int index = 0; index < count; ++index) {
            SkDPoint calcPt = c.ptAtT(roots[index]);
            if (!approximately_equal(calcPt.fY, axisIntercept)) {
                double extremeTs[6];
                int extrema = SkDCubic::FindExtrema(&c[0].fY, extremeTs);
                count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kYAxis, roots);
                break;
            }
        }
        return count;
    }

    int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
        addExactHorizontalEndPoints(left, right, axisIntercept);
        if (fAllowNear) {
            addNearHorizontalEndPoints(left, right, axisIntercept);
        }
        double roots[3];
        int count = HorizontalIntersect(fCubic, axisIntercept, roots);
        for (int index = 0; index < count; ++index) {
            double cubicT = roots[index];
            SkDPoint pt = { fCubic.ptAtT(cubicT).fX,  axisIntercept };
            double lineT = (pt.fX - left) / (right - left);
            if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
                fIntersections->insert(cubicT, lineT, pt);
            }
        }
        if (flipped) {
            fIntersections->flip();
        }
        checkCoincident();
        return fIntersections->used();
    }

        bool uniqueAnswer(double cubicT, const SkDPoint& pt) {
            for (int inner = 0; inner < fIntersections->used(); ++inner) {
                if (fIntersections->pt(inner) != pt) {
                    continue;
                }
                double existingCubicT = (*fIntersections)[0][inner];
                if (cubicT == existingCubicT) {
                    return false;
                }
                // check if midway on cubic is also same point. If so, discard this
                double cubicMidT = (existingCubicT + cubicT) / 2;
                SkDPoint cubicMidPt = fCubic.ptAtT(cubicMidT);
                if (cubicMidPt.approximatelyEqual(pt)) {
                    return false;
                }
            }
#if ONE_OFF_DEBUG
            SkDPoint cPt = fCubic.ptAtT(cubicT);
            SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
                    cPt.fX, cPt.fY);
#endif
            return true;
        }

    static int VerticalIntersect(const SkDCubic& c, double axisIntercept, double roots[3]) {
        double A, B, C, D;
        SkDCubic::Coefficients(&c[0].fX, &A, &B, &C, &D);
        D -= axisIntercept;
        int count = SkDCubic::RootsValidT(A, B, C, D, roots);
        for (int index = 0; index < count; ++index) {
            SkDPoint calcPt = c.ptAtT(roots[index]);
            if (!approximately_equal(calcPt.fX, axisIntercept)) {
                double extremeTs[6];
                int extrema = SkDCubic::FindExtrema(&c[0].fX, extremeTs);
                count = c.searchRoots(extremeTs, extrema, axisIntercept, SkDCubic::kXAxis, roots);
                break;
            }
        }
        return count;
    }

    int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
        addExactVerticalEndPoints(top, bottom, axisIntercept);
        if (fAllowNear) {
            addNearVerticalEndPoints(top, bottom, axisIntercept);
        }
        double roots[3];
        int count = VerticalIntersect(fCubic, axisIntercept, roots);
        for (int index = 0; index < count; ++index) {
            double cubicT = roots[index];
            SkDPoint pt = { axisIntercept, fCubic.ptAtT(cubicT).fY };
            double lineT = (pt.fY - top) / (bottom - top);
            if (pinTs(&cubicT, &lineT, &pt, kPointInitialized) && uniqueAnswer(cubicT, pt)) {
                fIntersections->insert(cubicT, lineT, pt);
            }
        }
        if (flipped) {
            fIntersections->flip();
        }
        checkCoincident();
        return fIntersections->used();
    }

    protected:

    void addExactEndPoints() {
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
            double lineT = fLine.exactPoint(fCubic[cIndex]);
            if (lineT < 0) {
                continue;
            }
            double cubicT = (double) (cIndex >> 1);
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
        }
    }

    /* Note that this does not look for endpoints of the line that are near the cubic.
       These points are found later when check ends looks for missing points */
    void addNearEndPoints() {
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
            double cubicT = (double) (cIndex >> 1);
            if (fIntersections->hasT(cubicT)) {
                continue;
            }
            double lineT = fLine.nearPoint(fCubic[cIndex], nullptr);
            if (lineT < 0) {
                continue;
            }
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
        }
    }

    void addExactHorizontalEndPoints(double left, double right, double y) {
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
            double lineT = SkDLine::ExactPointH(fCubic[cIndex], left, right, y);
            if (lineT < 0) {
                continue;
            }
            double cubicT = (double) (cIndex >> 1);
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
        }
    }

    void addNearHorizontalEndPoints(double left, double right, double y) {
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
            double cubicT = (double) (cIndex >> 1);
            if (fIntersections->hasT(cubicT)) {
                continue;
            }
            double lineT = SkDLine::NearPointH(fCubic[cIndex], left, right, y);
            if (lineT < 0) {
                continue;
            }
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
        }
        // FIXME: see if line end is nearly on cubic
    }

    void addExactVerticalEndPoints(double top, double bottom, double x) {
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
            double lineT = SkDLine::ExactPointV(fCubic[cIndex], top, bottom, x);
            if (lineT < 0) {
                continue;
            }
            double cubicT = (double) (cIndex >> 1);
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
        }
    }

    void addNearVerticalEndPoints(double top, double bottom, double x) {
        for (int cIndex = 0; cIndex < 4; cIndex += 3) {
            double cubicT = (double) (cIndex >> 1);
            if (fIntersections->hasT(cubicT)) {
                continue;
            }
            double lineT = SkDLine::NearPointV(fCubic[cIndex], top, bottom, x);
            if (lineT < 0) {
                continue;
            }
            fIntersections->insert(cubicT, lineT, fCubic[cIndex]);
        }
        // FIXME: see if line end is nearly on cubic
    }

    double findLineT(double t) {
        SkDPoint xy = fCubic.ptAtT(t);
        double dx = fLine[1].fX - fLine[0].fX;
        double dy = fLine[1].fY - fLine[0].fY;
        if (fabs(dx) > fabs(dy)) {
            return (xy.fX - fLine[0].fX) / dx;
        }
        return (xy.fY - fLine[0].fY) / dy;
    }

    bool pinTs(double* cubicT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
        if (!approximately_one_or_less(*lineT)) {
            return false;
        }
        if (!approximately_zero_or_more(*lineT)) {
            return false;
        }
        double cT = *cubicT = SkPinT(*cubicT);
        double lT = *lineT = SkPinT(*lineT);
        SkDPoint lPt = fLine.ptAtT(lT);
        SkDPoint cPt = fCubic.ptAtT(cT);
        if (!lPt.roughlyEqual(cPt)) {
            return false;
        }
        // FIXME: if points are roughly equal but not approximately equal, need to do
        // a binary search like quad/quad intersection to find more precise t values
        if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && cT != 0 && cT != 1)) {
            *pt = lPt;
        } else if (ptSet == kPointUninitialized) {
            *pt = cPt;
        }
        SkPoint gridPt = pt->asSkPoint();
        if (gridPt == fLine[0].asSkPoint()) {
            *lineT = 0;
        } else if (gridPt == fLine[1].asSkPoint()) {
            *lineT = 1;
        }
        if (gridPt == fCubic[0].asSkPoint() && approximately_equal(*cubicT, 0)) {
            *cubicT = 0;
        } else if (gridPt == fCubic[3].asSkPoint() && approximately_equal(*cubicT, 1)) {
            *cubicT = 1;
        }
        return true;
    }

private:
    const SkDCubic& fCubic;
    const SkDLine& fLine;
    SkIntersections* fIntersections;
    bool fAllowNear;
};

int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
        bool flipped) {
    SkDLine line = {{{ left, y }, { right, y }}};
    LineCubicIntersections c(cubic, line, this);
    return c.horizontalIntersect(y, left, right, flipped);
}

int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
        bool flipped) {
    SkDLine line = {{{ x, top }, { x, bottom }}};
    LineCubicIntersections c(cubic, line, this);
    return c.verticalIntersect(x, top, bottom, flipped);
}

int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
    LineCubicIntersections c(cubic, line, this);
    c.allowNear(fAllowNear);
    return c.intersect();
}

int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
    LineCubicIntersections c(cubic, line, this);
    fUsed = c.intersectRay(fT[0]);
    for (int index = 0; index < fUsed; ++index) {
        fPt[index] = cubic.ptAtT(fT[0][index]);
    }
    return fUsed;
}

// SkDCubic accessors to Intersection utilities

int SkDCubic::horizontalIntersect(double yIntercept, double roots[3]) const {
    return LineCubicIntersections::HorizontalIntersect(*this, yIntercept, roots);
}

int SkDCubic::verticalIntersect(double xIntercept, double roots[3]) const {
    return LineCubicIntersections::VerticalIntersect(*this, xIntercept, roots);
}