1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsPoint.h"
#include "SkPathOpsQuad.h"
#include "SkPathOpsRect.h"
#include "SkReduceOrder.h"
#include "SkTSort.h"
#if ONE_OFF_DEBUG
static const double tLimits1[2][2] = {{0.388600450, 0.388600452}, {0.245852802, 0.245852804}};
static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
#endif
#define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
#define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
#define SWAP_TOP_DEBUG 0
static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
SkDCubic part = cubic.subDivide(tStart, tEnd);
SkDQuad quad = part.toQuad();
// FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
// extremely shallow quadratic?
int order = reducer->reduce(quad, SkReduceOrder::kFill_Style);
#if DEBUG_QUAD_PART
SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
" t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
cubic[3].fX, cubic[3].fY, tStart, tEnd);
SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
#if DEBUG_QUAD_PART_SHOW_SIMPLE
SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
if (order > 1) {
SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
}
if (order > 2) {
SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
}
SkDebugf(")\n");
SkASSERT(order < 4 && order > 0);
#endif
#endif
return order;
}
static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
int order2, SkIntersections& i) {
if (order1 == 3 && order2 == 3) {
i.intersect(simple1, simple2);
} else if (order1 <= 2 && order2 <= 2) {
i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
} else if (order1 == 3 && order2 <= 2) {
i.intersect(simple1, (const SkDLine&) simple2);
} else {
SkASSERT(order1 <= 2 && order2 == 3);
i.intersect(simple2, (const SkDLine&) simple1);
i.swapPts();
}
}
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
double t2s, double t2e, double precisionScale, SkIntersections& i) {
i.upDepth();
SkDCubic c1 = cubic1.subDivide(t1s, t1e);
SkDCubic c2 = cubic2.subDivide(t2s, t2e);
SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
// OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
double t1Start = t1s;
int ts1Count = ts1.count();
for (int i1 = 0; i1 <= ts1Count; ++i1) {
const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
const double t1 = t1s + (t1e - t1s) * tEnd1;
SkReduceOrder s1;
int o1 = quadPart(cubic1, t1Start, t1, &s1);
double t2Start = t2s;
int ts2Count = ts2.count();
for (int i2 = 0; i2 <= ts2Count; ++i2) {
const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
const double t2 = t2s + (t2e - t2s) * tEnd2;
if (&cubic1 == &cubic2 && t1Start >= t2Start) {
t2Start = t2;
continue;
}
SkReduceOrder s2;
int o2 = quadPart(cubic2, t2Start, t2, &s2);
#if ONE_OFF_DEBUG
char tab[] = " ";
if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
&& tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
__FUNCTION__, t1Start, t1, t2Start, t2);
SkIntersections xlocals;
intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
}
#endif
SkIntersections locals;
intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
int tCount = locals.used();
for (int tIdx = 0; tIdx < tCount; ++tIdx) {
double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
// if the computed t is not sufficiently precise, iterate
SkDPoint p1 = cubic1.ptAtT(to1);
SkDPoint p2 = cubic2.ptAtT(to2);
if (p1.approximatelyEqual(p2)) {
SkASSERT(!locals.isCoincident(tIdx));
if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
if (i.swapped()) { // FIXME: insert should respect swap
i.insert(to2, to1, p1);
} else {
i.insert(to1, to2, p1);
}
}
} else {
double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine
double c1Bottom = tIdx == 0 ? 0 :
(t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
double c1Min = SkTMax(c1Bottom, to1 - offset);
double c1Top = tIdx == tCount - 1 ? 1 :
(t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
double c1Max = SkTMin(c1Top, to1 + offset);
double c2Min = SkTMax(0., to2 - offset);
double c2Max = SkTMin(1., to2 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
__FUNCTION__,
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
c1Max, c2Min, c2Max);
#endif
intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
#endif
if (tCount > 1) {
c1Min = SkTMax(0., to1 - offset);
c1Max = SkTMin(1., to1 + offset);
double c2Bottom = tIdx == 0 ? to2 :
(t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
double c2Top = tIdx == tCount - 1 ? to2 :
(t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
if (c2Bottom > c2Top) {
SkTSwap(c2Bottom, c2Top);
}
if (c2Bottom == to2) {
c2Bottom = 0;
}
if (c2Top == to2) {
c2Top = 1;
}
c2Min = SkTMax(c2Bottom, to2 - offset);
c2Max = SkTMin(c2Top, to2 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
__FUNCTION__,
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
c1Max, c2Min, c2Max);
#endif
intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
#endif
c1Min = SkTMax(c1Bottom, to1 - offset);
c1Max = SkTMin(c1Top, to1 + offset);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
__FUNCTION__,
c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
&& c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
&& to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
&& c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
&& to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
" 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
" c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
c1Max, c2Min, c2Max);
#endif
intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
#if ONE_OFF_DEBUG
SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
#endif
}
// intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
// FIXME: if no intersection is found, either quadratics intersected where
// cubics did not, or the intersection was missed. In the former case, expect
// the quadratics to be nearly parallel at the point of intersection, and check
// for that.
}
}
t2Start = t2;
}
t1Start = t1;
}
i.downDepth();
}
#define LINE_FRACTION 0.1
// intersect the end of the cubic with the other. Try lines from the end to control and opposite
// end to determine range of t on opposite cubic.
static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
const SkDRect& bounds2, bool selfIntersect, SkIntersections& i) {
SkDLine line;
int t1Index = start ? 0 : 3;
bool swap = i.swapped();
double testT = (double) !start;
// quad/quad at this point checks to see if exact matches have already been found
// cubic/cubic can't reject so easily since cubics can intersect same point more than once
if (!selfIntersect) {
SkDLine tmpLine;
tmpLine[0] = tmpLine[1] = cubic2[t1Index];
tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
SkIntersections impTs;
impTs.intersectRay(cubic1, tmpLine);
for (int index = 0; index < impTs.used(); ++index) {
SkDPoint realPt = impTs.pt(index);
if (!tmpLine[0].approximatelyEqualHalf(realPt)) {
continue;
}
if (swap) {
i.insert(testT, impTs[0][index], tmpLine[0]);
} else {
i.insert(impTs[0][index], testT, tmpLine[0]);
}
return;
}
}
// don't bother if the two cubics are connnected
static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
static const int kMaxLineCubicIntersections = 3;
SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
line[0] = cubic1[t1Index];
// this variant looks for intersections with the end point and lines parallel to other points
for (int index = 0; index < kPointsInCubic; ++index) {
if (index == t1Index) {
continue;
}
SkDVector dxy1 = cubic1[index] - line[0];
dxy1 /= SkDCubic::gPrecisionUnit;
line[1] = line[0] + dxy1;
SkDRect lineBounds;
lineBounds.setBounds(line);
if (!bounds2.intersects(&lineBounds)) {
continue;
}
SkIntersections local;
if (!local.intersect(cubic2, line)) {
continue;
}
for (int idx2 = 0; idx2 < local.used(); ++idx2) {
double foundT = local[0][idx2];
if (approximately_less_than_zero(foundT)
|| approximately_greater_than_one(foundT)) {
continue;
}
if (local.pt(idx2).approximatelyEqual(line[0])) {
if (i.swapped()) { // FIXME: insert should respect swap
i.insert(foundT, testT, line[0]);
} else {
i.insert(testT, foundT, line[0]);
}
} else {
tVals.push_back(foundT);
}
}
}
if (tVals.count() == 0) {
return;
}
SkTQSort<double>(tVals.begin(), tVals.end() - 1);
double tMin1 = start ? 0 : 1 - LINE_FRACTION;
double tMax1 = start ? LINE_FRACTION : 1;
int tIdx = 0;
do {
int tLast = tIdx;
while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
++tLast;
}
double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
int lastUsed = i.used();
intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
if (lastUsed == i.used()) {
tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
}
tIdx = tLast + 1;
} while (tIdx < tVals.count());
return;
}
const double CLOSE_ENOUGH = 0.001;
static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
return false;
}
pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
return true;
}
static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
int last = i.used() - 1;
if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
return false;
}
pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
return true;
}
static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
// the idea here is to see at minimum do a quick reject by rotating all points
// to either side of the line formed by connecting the endpoints
// if the opposite curves points are on the line or on the other side, the
// curves at most intersect at the endpoints
for (int oddMan = 0; oddMan < 4; ++oddMan) {
const SkDPoint* endPt[3];
for (int opp = 1; opp < 4; ++opp) {
int end = oddMan ^ opp; // choose a value not equal to oddMan
endPt[opp - 1] = &c1[end];
}
for (int triTest = 0; triTest < 3; ++triTest) {
double origX = endPt[triTest]->fX;
double origY = endPt[triTest]->fY;
int oppTest = triTest + 1;
if (3 == oppTest) {
oppTest = 0;
}
double adj = endPt[oppTest]->fX - origX;
double opp = endPt[oppTest]->fY - origY;
double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
if (approximately_zero(sign)) {
goto tryNextHalfPlane;
}
for (int n = 0; n < 4; ++n) {
double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
if (test * sign > 0 && !precisely_zero(test)) {
goto tryNextHalfPlane;
}
}
}
return true;
tryNextHalfPlane:
;
}
return false;
}
int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
bool selfIntersect = &c1 == &c2;
if (selfIntersect) {
if (c1[0].approximatelyEqualHalf(c1[3])) {
insert(0, 1, c1[0]);
}
} else {
for (int i1 = 0; i1 < 4; i1 += 3) {
for (int i2 = 0; i2 < 4; i2 += 3) {
if (c1[i1].approximatelyEqualHalf(c2[i2])) {
insert(i1 >> 1, i2 >> 1, c1[i1]);
}
}
}
}
SkASSERT(fUsed < 4);
if (!selfIntersect) {
if (only_end_pts_in_common(c1, c2)) {
return fUsed;
}
if (only_end_pts_in_common(c2, c1)) {
return fUsed;
}
}
// quad/quad does linear test here -- cubic does not
// cubics which are really lines should have been detected in reduce step earlier
SkDRect c1Bounds, c2Bounds;
// FIXME: pass in cached bounds from caller
c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ?
c2Bounds.setBounds(c2);
intersectEnd(c1, false, c2, c2Bounds, selfIntersect, *this);
intersectEnd(c1, true, c2, c2Bounds, selfIntersect, *this);
if (selfIntersect) {
if (fUsed) {
return fUsed;
}
} else {
swap();
intersectEnd(c2, false, c1, c1Bounds, false, *this);
intersectEnd(c2, true, c1, c1Bounds, false, *this);
swap();
}
// if two ends intersect, check middle for coincidence
if (fUsed >= 2) {
SkASSERT(!selfIntersect);
int last = fUsed - 1;
double tRange1 = fT[0][last] - fT[0][0];
double tRange2 = fT[1][last] - fT[1][0];
for (int index = 1; index < 5; ++index) {
double testT1 = fT[0][0] + tRange1 * index / 5;
double testT2 = fT[1][0] + tRange2 * index / 5;
SkDPoint testPt1 = c1.ptAtT(testT1);
SkDPoint testPt2 = c2.ptAtT(testT2);
if (!testPt1.approximatelyEqual(testPt2)) {
goto skipCoincidence;
}
}
if (fUsed > 2) {
fPt[1] = fPt[last];
fT[0][1] = fT[0][last];
fT[1][1] = fT[1][last];
fUsed = 2;
}
fIsCoincident[0] = fIsCoincident[1] = 0x03;
return fUsed;
}
skipCoincidence:
::intersect(c1, 0, 1, c2, 0, 1, 1, *this);
// If an end point and a second point very close to the end is returned, the second
// point may have been detected because the approximate quads
// intersected at the end and close to it. Verify that the second point is valid.
if (fUsed <= 1) {
return fUsed;
}
SkDPoint pt[2];
if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
removeOne(1);
}
if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
&& pt[0].approximatelyEqual(pt[1])) {
removeOne(used() - 2);
}
// vet the pairs of t values to see if the mid value is also on the curve. If so, mark
// the span as coincident
if (fUsed >= 2 && !coincidentUsed()) {
int last = fUsed - 1;
int match = 0;
for (int index = 0; index < last; ++index) {
double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
pt[0] = c1.ptAtT(mid1);
pt[1] = c2.ptAtT(mid2);
if (pt[0].approximatelyEqual(pt[1])) {
match |= 1 << index;
}
}
if (match) {
if (((match + 1) & match) != 0) {
SkDebugf("%s coincident hole\n", __FUNCTION__);
}
// for now, assume that everything from start to finish is coincident
if (fUsed > 2) {
fPt[1] = fPt[last];
fT[0][1] = fT[0][last];
fT[1][1] = fT[1][last];
fIsCoincident[0] = 0x03;
fIsCoincident[1] = 0x03;
fUsed = 2;
}
}
}
return fUsed;
}
// Up promote the quad to a cubic.
// OPTIMIZATION If this is a common use case, optimize by duplicating
// the intersect 3 loop to avoid the promotion / demotion code
int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
SkDCubic up = quad.toCubic();
(void) intersect(cubic, up);
return used();
}
/* http://www.ag.jku.at/compass/compasssample.pdf
( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth@math.uio.no
SINTEF Applied Mathematics http://www.sintef.no )
describes a method to find the self intersection of a cubic by taking the gradient of the implicit
form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
int SkIntersections::intersect(const SkDCubic& c) {
// check to see if x or y end points are the extrema. Are other quick rejects possible?
if (c.endsAreExtremaInXOrY()) {
return false;
}
(void) intersect(c, c);
if (used() > 0) {
SkASSERT(used() == 1);
if (fT[0][0] > fT[1][0]) {
swapPts();
}
}
return used();
}
|