1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
#include "SkXfermode.h"
#include "SkXfermode_proccoeff.h"
#include "SkColorPriv.h"
#include <arm_neon.h>
#include "SkColor_opts_neon.h"
#include "SkXfermode_opts_arm_neon.h"
#define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b)
////////////////////////////////////////////////////////////////////////////////
// NEONized skia functions
////////////////////////////////////////////////////////////////////////////////
static inline uint8x8_t SkAlphaMulAlpha_neon8(uint8x8_t color, uint8x8_t alpha) {
uint16x8_t tmp;
uint8x8_t ret;
tmp = vmull_u8(color, alpha);
tmp = vaddq_u16(tmp, vdupq_n_u16(128));
tmp = vaddq_u16(tmp, vshrq_n_u16(tmp, 8));
ret = vshrn_n_u16(tmp, 8);
return ret;
}
static inline uint16x8_t SkAlphaMulAlpha_neon8_16(uint8x8_t color, uint8x8_t alpha) {
uint16x8_t ret;
ret = vmull_u8(color, alpha);
ret = vaddq_u16(ret, vdupq_n_u16(128));
ret = vaddq_u16(ret, vshrq_n_u16(ret, 8));
ret = vshrq_n_u16(ret, 8);
return ret;
}
static inline uint8x8_t SkDiv255Round_neon8_32_8(int32x4_t p1, int32x4_t p2) {
uint16x8_t tmp;
#ifdef SK_CPU_ARM64
tmp = vmovn_high_u32(vmovn_u32(vreinterpretq_u32_s32(p1)),
vreinterpretq_u32_s32(p2));
#else
tmp = vcombine_u16(vmovn_u32(vreinterpretq_u32_s32(p1)),
vmovn_u32(vreinterpretq_u32_s32(p2)));
#endif
tmp += vdupq_n_u16(128);
tmp += vshrq_n_u16(tmp, 8);
return vshrn_n_u16(tmp, 8);
}
static inline uint16x8_t SkDiv255Round_neon8_16_16(uint16x8_t prod) {
prod += vdupq_n_u16(128);
prod += vshrq_n_u16(prod, 8);
return vshrq_n_u16(prod, 8);
}
static inline uint8x8_t clamp_div255round_simd8_32(int32x4_t val1, int32x4_t val2) {
uint8x8_t ret;
uint32x4_t cmp1, cmp2;
uint16x8_t cmp16;
uint8x8_t cmp8, cmp8_1;
// Test if <= 0
cmp1 = vcleq_s32(val1, vdupq_n_s32(0));
cmp2 = vcleq_s32(val2, vdupq_n_s32(0));
#ifdef SK_CPU_ARM64
cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2);
#else
cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
#endif
cmp8_1 = vmovn_u16(cmp16);
// Init to zero
ret = vdup_n_u8(0);
// Test if >= 255*255
cmp1 = vcgeq_s32(val1, vdupq_n_s32(255*255));
cmp2 = vcgeq_s32(val2, vdupq_n_s32(255*255));
#ifdef SK_CPU_ARM64
cmp16 = vmovn_high_u32(vmovn_u32(cmp1), cmp2);
#else
cmp16 = vcombine_u16(vmovn_u32(cmp1), vmovn_u32(cmp2));
#endif
cmp8 = vmovn_u16(cmp16);
// Insert 255 where true
ret = vbsl_u8(cmp8, vdup_n_u8(255), ret);
// Calc SkDiv255Round
uint8x8_t div = SkDiv255Round_neon8_32_8(val1, val2);
// Insert where false and previous test false
cmp8 = cmp8 | cmp8_1;
ret = vbsl_u8(cmp8, ret, div);
// Return the final combination
return ret;
}
////////////////////////////////////////////////////////////////////////////////
// 1 pixel modeprocs
////////////////////////////////////////////////////////////////////////////////
// kSrcATop_Mode, //!< [Da, Sc * Da + (1 - Sa) * Dc]
SkPMColor srcatop_modeproc_neon(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned isa = 255 - sa;
uint8x8_t vda, visa, vsrc, vdst;
vda = vdup_n_u8(da);
visa = vdup_n_u8(isa);
uint16x8_t vsrc_wide, vdst_wide;
vsrc_wide = vmull_u8(vda, vreinterpret_u8_u32(vdup_n_u32(src)));
vdst_wide = vmull_u8(visa, vreinterpret_u8_u32(vdup_n_u32(dst)));
vsrc_wide += vdupq_n_u16(128);
vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
vdst_wide += vdupq_n_u16(128);
vdst_wide += vshrq_n_u16(vdst_wide, 8);
vsrc = vshrn_n_u16(vsrc_wide, 8);
vdst = vshrn_n_u16(vdst_wide, 8);
vsrc += vdst;
vsrc = vset_lane_u8(da, vsrc, 3);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kDstATop_Mode, //!< [Sa, Sa * Dc + Sc * (1 - Da)]
SkPMColor dstatop_modeproc_neon(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned ida = 255 - da;
uint8x8_t vsa, vida, vsrc, vdst;
vsa = vdup_n_u8(sa);
vida = vdup_n_u8(ida);
uint16x8_t vsrc_wide, vdst_wide;
vsrc_wide = vmull_u8(vida, vreinterpret_u8_u32(vdup_n_u32(src)));
vdst_wide = vmull_u8(vsa, vreinterpret_u8_u32(vdup_n_u32(dst)));
vsrc_wide += vdupq_n_u16(128);
vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
vdst_wide += vdupq_n_u16(128);
vdst_wide += vshrq_n_u16(vdst_wide, 8);
vsrc = vshrn_n_u16(vsrc_wide, 8);
vdst = vshrn_n_u16(vdst_wide, 8);
vsrc += vdst;
vsrc = vset_lane_u8(sa, vsrc, 3);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kXor_Mode [Sa + Da - 2 * Sa * Da, Sc * (1 - Da) + (1 - Sa) * Dc]
SkPMColor xor_modeproc_neon(SkPMColor src, SkPMColor dst) {
unsigned sa = SkGetPackedA32(src);
unsigned da = SkGetPackedA32(dst);
unsigned ret_alpha = sa + da - (SkAlphaMulAlpha(sa, da) << 1);
unsigned isa = 255 - sa;
unsigned ida = 255 - da;
uint8x8_t vsrc, vdst, visa, vida;
uint16x8_t vsrc_wide, vdst_wide;
visa = vdup_n_u8(isa);
vida = vdup_n_u8(ida);
vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
vsrc_wide = vmull_u8(vsrc, vida);
vdst_wide = vmull_u8(vdst, visa);
vsrc_wide += vdupq_n_u16(128);
vsrc_wide += vshrq_n_u16(vsrc_wide, 8);
vdst_wide += vdupq_n_u16(128);
vdst_wide += vshrq_n_u16(vdst_wide, 8);
vsrc = vshrn_n_u16(vsrc_wide, 8);
vdst = vshrn_n_u16(vdst_wide, 8);
vsrc += vdst;
vsrc = vset_lane_u8(ret_alpha, vsrc, 3);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kPlus_Mode
SkPMColor plus_modeproc_neon(SkPMColor src, SkPMColor dst) {
uint8x8_t vsrc, vdst;
vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
vsrc = vqadd_u8(vsrc, vdst);
return vget_lane_u32(vreinterpret_u32_u8(vsrc), 0);
}
// kModulate_Mode
SkPMColor modulate_modeproc_neon(SkPMColor src, SkPMColor dst) {
uint8x8_t vsrc, vdst, vres;
uint16x8_t vres_wide;
vsrc = vreinterpret_u8_u32(vdup_n_u32(src));
vdst = vreinterpret_u8_u32(vdup_n_u32(dst));
vres_wide = vmull_u8(vsrc, vdst);
vres_wide += vdupq_n_u16(128);
vres_wide += vshrq_n_u16(vres_wide, 8);
vres = vshrn_n_u16(vres_wide, 8);
return vget_lane_u32(vreinterpret_u32_u8(vres), 0);
}
////////////////////////////////////////////////////////////////////////////////
// 8 pixels modeprocs
////////////////////////////////////////////////////////////////////////////////
uint8x8x4_t dstover_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t src_scale;
src_scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
ret.val[NEON_A] = dst.val[NEON_A] + SkAlphaMul_neon8(src.val[NEON_A], src_scale);
ret.val[NEON_R] = dst.val[NEON_R] + SkAlphaMul_neon8(src.val[NEON_R], src_scale);
ret.val[NEON_G] = dst.val[NEON_G] + SkAlphaMul_neon8(src.val[NEON_G], src_scale);
ret.val[NEON_B] = dst.val[NEON_B] + SkAlphaMul_neon8(src.val[NEON_B], src_scale);
return ret;
}
uint8x8x4_t srcin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale;
scale = SkAlpha255To256_neon8(dst.val[NEON_A]);
ret.val[NEON_A] = SkAlphaMul_neon8(src.val[NEON_A], scale);
ret.val[NEON_R] = SkAlphaMul_neon8(src.val[NEON_R], scale);
ret.val[NEON_G] = SkAlphaMul_neon8(src.val[NEON_G], scale);
ret.val[NEON_B] = SkAlphaMul_neon8(src.val[NEON_B], scale);
return ret;
}
uint8x8x4_t dstin_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale;
scale = SkAlpha255To256_neon8(src.val[NEON_A]);
ret = SkAlphaMulQ_neon8(dst, scale);
return ret;
}
uint8x8x4_t srcout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), dst.val[NEON_A]);
ret = SkAlphaMulQ_neon8(src, scale);
return ret;
}
uint8x8x4_t dstout_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint16x8_t scale = vsubw_u8(vdupq_n_u16(256), src.val[NEON_A]);
ret = SkAlphaMulQ_neon8(dst, scale);
return ret;
}
uint8x8x4_t srcatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t isa;
isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
ret.val[NEON_A] = dst.val[NEON_A];
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_A])
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
return ret;
}
uint8x8x4_t dstatop_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t ida;
ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
ret.val[NEON_A] = src.val[NEON_A];
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], src.val[NEON_A]);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], src.val[NEON_A]);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], src.val[NEON_A]);
return ret;
}
uint8x8x4_t xor_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
uint8x8_t isa, ida;
uint16x8_t tmp_wide, tmp_wide2;
isa = vsub_u8(vdup_n_u8(255), src.val[NEON_A]);
ida = vsub_u8(vdup_n_u8(255), dst.val[NEON_A]);
// First calc alpha
tmp_wide = vmovl_u8(src.val[NEON_A]);
tmp_wide = vaddw_u8(tmp_wide, dst.val[NEON_A]);
tmp_wide2 = vshll_n_u8(SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]), 1);
tmp_wide = vsubq_u16(tmp_wide, tmp_wide2);
ret.val[NEON_A] = vmovn_u16(tmp_wide);
// Then colors
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_R], isa);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_G], isa);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], ida)
+ SkAlphaMulAlpha_neon8(dst.val[NEON_B], isa);
return ret;
}
uint8x8x4_t plus_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = vqadd_u8(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = vqadd_u8(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = vqadd_u8(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = vqadd_u8(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
uint8x8x4_t modulate_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = SkAlphaMulAlpha_neon8(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = SkAlphaMulAlpha_neon8(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = SkAlphaMulAlpha_neon8(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = SkAlphaMulAlpha_neon8(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
static inline uint8x8_t srcover_color(uint8x8_t a, uint8x8_t b) {
uint16x8_t tmp;
tmp = vaddl_u8(a, b);
tmp -= SkAlphaMulAlpha_neon8_16(a, b);
return vmovn_u16(tmp);
}
uint8x8x4_t screen_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = srcover_color(src.val[NEON_R], dst.val[NEON_R]);
ret.val[NEON_G] = srcover_color(src.val[NEON_G], dst.val[NEON_G]);
ret.val[NEON_B] = srcover_color(src.val[NEON_B], dst.val[NEON_B]);
return ret;
}
template <bool overlay>
static inline uint8x8_t overlay_hardlight_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
/*
* In the end we're gonna use (rc + tmp) with a different rc
* coming from an alternative.
* The whole value (rc + tmp) can always be expressed as
* VAL = COM - SUB in the if case
* VAL = COM + SUB - sa*da in the else case
*
* with COM = 255 * (sc + dc)
* and SUB = sc*da + dc*sa - 2*dc*sc
*/
// Prepare common subexpressions
uint16x8_t const255 = vdupq_n_u16(255);
uint16x8_t sc_plus_dc = vaddl_u8(sc, dc);
uint16x8_t scda = vmull_u8(sc, da);
uint16x8_t dcsa = vmull_u8(dc, sa);
uint16x8_t sada = vmull_u8(sa, da);
// Prepare non common subexpressions
uint16x8_t dc2, sc2;
uint32x4_t scdc2_1, scdc2_2;
if (overlay) {
dc2 = vshll_n_u8(dc, 1);
scdc2_1 = vmull_u16(vget_low_u16(dc2), vget_low_u16(vmovl_u8(sc)));
#ifdef SK_CPU_ARM64
scdc2_2 = vmull_high_u16(dc2, vmovl_u8(sc));
#else
scdc2_2 = vmull_u16(vget_high_u16(dc2), vget_high_u16(vmovl_u8(sc)));
#endif
} else {
sc2 = vshll_n_u8(sc, 1);
scdc2_1 = vmull_u16(vget_low_u16(sc2), vget_low_u16(vmovl_u8(dc)));
#ifdef SK_CPU_ARM64
scdc2_2 = vmull_high_u16(sc2, vmovl_u8(dc));
#else
scdc2_2 = vmull_u16(vget_high_u16(sc2), vget_high_u16(vmovl_u8(dc)));
#endif
}
// Calc COM
int32x4_t com1, com2;
com1 = vreinterpretq_s32_u32(
vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
com2 = vreinterpretq_s32_u32(
#ifdef SK_CPU_ARM64
vmull_high_u16(const255, sc_plus_dc));
#else
vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
#endif
// Calc SUB
int32x4_t sub1, sub2;
sub1 = vreinterpretq_s32_u32(vaddl_u16(vget_low_u16(scda), vget_low_u16(dcsa)));
#ifdef SK_CPU_ARM64
sub2 = vreinterpretq_s32_u32(vaddl_high_u16(scda, dcsa));
#else
sub2 = vreinterpretq_s32_u32(vaddl_u16(vget_high_u16(scda), vget_high_u16(dcsa)));
#endif
sub1 = vsubq_s32(sub1, vreinterpretq_s32_u32(scdc2_1));
sub2 = vsubq_s32(sub2, vreinterpretq_s32_u32(scdc2_2));
// Compare 2*dc <= da
uint16x8_t cmp;
if (overlay) {
cmp = vcleq_u16(dc2, vmovl_u8(da));
} else {
cmp = vcleq_u16(sc2, vmovl_u8(sa));
}
// Prepare variables
int32x4_t val1_1, val1_2;
int32x4_t val2_1, val2_2;
uint32x4_t cmp1, cmp2;
// Doing a signed lengthening allows to save a few instructions
// thanks to sign extension.
cmp1 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_low_u16(cmp))));
#ifdef SK_CPU_ARM64
cmp2 = vreinterpretq_u32_s32(vmovl_high_s16(vreinterpretq_s16_u16(cmp)));
#else
cmp2 = vreinterpretq_u32_s32(vmovl_s16(vreinterpret_s16_u16(vget_high_u16(cmp))));
#endif
// Calc COM - SUB
val1_1 = com1 - sub1;
val1_2 = com2 - sub2;
// Calc COM + SUB - sa*da
val2_1 = com1 + sub1;
val2_2 = com2 + sub2;
val2_1 = vsubq_s32(val2_1, vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(sada))));
#ifdef SK_CPU_ARM64
val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_high_u16(sada)));
#else
val2_2 = vsubq_s32(val2_2, vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(sada))));
#endif
// Insert where needed
val1_1 = vbslq_s32(cmp1, val1_1, val2_1);
val1_2 = vbslq_s32(cmp2, val1_2, val2_2);
// Call the clamp_div255round function
return clamp_div255round_simd8_32(val1_1, val1_2);
}
static inline uint8x8_t overlay_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return overlay_hardlight_color<true>(sc, dc, sa, da);
}
uint8x8x4_t overlay_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = overlay_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = overlay_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = overlay_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
template <bool lighten>
static inline uint8x8_t lighten_darken_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint16x8_t sd, ds, cmp, tmp, tmp2;
// Prepare
sd = vmull_u8(sc, da);
ds = vmull_u8(dc, sa);
// Do test
if (lighten) {
cmp = vcgtq_u16(sd, ds);
} else {
cmp = vcltq_u16(sd, ds);
}
// Assign if
tmp = vaddl_u8(sc, dc);
tmp2 = tmp;
tmp -= SkDiv255Round_neon8_16_16(ds);
// Calc else
tmp2 -= SkDiv255Round_neon8_16_16(sd);
// Insert where needed
tmp = vbslq_u16(cmp, tmp, tmp2);
return vmovn_u16(tmp);
}
static inline uint8x8_t darken_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return lighten_darken_color<false>(sc, dc, sa, da);
}
uint8x8x4_t darken_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = darken_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = darken_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = darken_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t lighten_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return lighten_darken_color<true>(sc, dc, sa, da);
}
uint8x8x4_t lighten_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = lighten_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = lighten_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = lighten_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t hardlight_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
return overlay_hardlight_color<false>(sc, dc, sa, da);
}
uint8x8x4_t hardlight_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = hardlight_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = hardlight_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = hardlight_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t difference_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint16x8_t sd, ds, tmp;
int16x8_t val;
sd = vmull_u8(sc, da);
ds = vmull_u8(dc, sa);
tmp = vminq_u16(sd, ds);
tmp = SkDiv255Round_neon8_16_16(tmp);
tmp = vshlq_n_u16(tmp, 1);
val = vreinterpretq_s16_u16(vaddl_u8(sc, dc));
val -= vreinterpretq_s16_u16(tmp);
val = vmaxq_s16(val, vdupq_n_s16(0));
val = vminq_s16(val, vdupq_n_s16(255));
return vmovn_u16(vreinterpretq_u16_s16(val));
}
uint8x8x4_t difference_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = difference_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = difference_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = difference_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t exclusion_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
/* The equation can be simplified to 255(sc + dc) - 2 * sc * dc */
uint16x8_t sc_plus_dc, scdc, const255;
int32x4_t term1_1, term1_2, term2_1, term2_2;
/* Calc (sc + dc) and (sc * dc) */
sc_plus_dc = vaddl_u8(sc, dc);
scdc = vmull_u8(sc, dc);
/* Prepare constants */
const255 = vdupq_n_u16(255);
/* Calc the first term */
term1_1 = vreinterpretq_s32_u32(
vmull_u16(vget_low_u16(const255), vget_low_u16(sc_plus_dc)));
term1_2 = vreinterpretq_s32_u32(
#ifdef SK_CPU_ARM64
vmull_high_u16(const255, sc_plus_dc));
#else
vmull_u16(vget_high_u16(const255), vget_high_u16(sc_plus_dc)));
#endif
/* Calc the second term */
term2_1 = vreinterpretq_s32_u32(vshll_n_u16(vget_low_u16(scdc), 1));
#ifdef SK_CPU_ARM64
term2_2 = vreinterpretq_s32_u32(vshll_high_n_u16(scdc, 1));
#else
term2_2 = vreinterpretq_s32_u32(vshll_n_u16(vget_high_u16(scdc), 1));
#endif
return clamp_div255round_simd8_32(term1_1 - term2_1, term1_2 - term2_2);
}
uint8x8x4_t exclusion_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = exclusion_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = exclusion_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = exclusion_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
static inline uint8x8_t blendfunc_multiply_color(uint8x8_t sc, uint8x8_t dc,
uint8x8_t sa, uint8x8_t da) {
uint32x4_t val1, val2;
uint16x8_t scdc, t1, t2;
t1 = vmull_u8(sc, vdup_n_u8(255) - da);
t2 = vmull_u8(dc, vdup_n_u8(255) - sa);
scdc = vmull_u8(sc, dc);
val1 = vaddl_u16(vget_low_u16(t1), vget_low_u16(t2));
#ifdef SK_CPU_ARM64
val2 = vaddl_high_u16(t1, t2);
#else
val2 = vaddl_u16(vget_high_u16(t1), vget_high_u16(t2));
#endif
val1 = vaddw_u16(val1, vget_low_u16(scdc));
#ifdef SK_CPU_ARM64
val2 = vaddw_high_u16(val2, scdc);
#else
val2 = vaddw_u16(val2, vget_high_u16(scdc));
#endif
return clamp_div255round_simd8_32(
vreinterpretq_s32_u32(val1), vreinterpretq_s32_u32(val2));
}
uint8x8x4_t multiply_modeproc_neon8(uint8x8x4_t src, uint8x8x4_t dst) {
uint8x8x4_t ret;
ret.val[NEON_A] = srcover_color(src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_R] = blendfunc_multiply_color(src.val[NEON_R], dst.val[NEON_R],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_G] = blendfunc_multiply_color(src.val[NEON_G], dst.val[NEON_G],
src.val[NEON_A], dst.val[NEON_A]);
ret.val[NEON_B] = blendfunc_multiply_color(src.val[NEON_B], dst.val[NEON_B],
src.val[NEON_A], dst.val[NEON_A]);
return ret;
}
////////////////////////////////////////////////////////////////////////////////
typedef uint8x8x4_t (*SkXfermodeProcSIMD)(uint8x8x4_t src, uint8x8x4_t dst);
extern SkXfermodeProcSIMD gNEONXfermodeProcs[];
#ifdef SK_SUPPORT_LEGACY_DEEPFLATTENING
SkNEONProcCoeffXfermode::SkNEONProcCoeffXfermode(SkReadBuffer& buffer) : INHERITED(buffer) {
fProcSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[this->getMode()]);
}
#endif
void SkNEONProcCoeffXfermode::xfer32(SkPMColor* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
// Unrolled NEON code
// We'd like to just do this (modulo a few casts):
// vst4_u8(dst, procSIMD(vld4_u8(src), vld4_u8(dst)));
// src += 8;
// dst += 8;
// but that tends to generate miserable code. Here are a bunch of faster
// workarounds for different architectures and compilers.
while (count >= 8) {
#ifdef SK_CPU_ARM32
uint8x8x4_t vsrc, vdst, vres;
#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6))
asm volatile (
"vld4.u8 %h[vsrc], [%[src]]! \t\n"
"vld4.u8 %h[vdst], [%[dst]] \t\n"
: [vsrc] "=w" (vsrc), [vdst] "=w" (vdst), [src] "+&r" (src)
: [dst] "r" (dst)
:
);
#else
register uint8x8_t d0 asm("d0");
register uint8x8_t d1 asm("d1");
register uint8x8_t d2 asm("d2");
register uint8x8_t d3 asm("d3");
register uint8x8_t d4 asm("d4");
register uint8x8_t d5 asm("d5");
register uint8x8_t d6 asm("d6");
register uint8x8_t d7 asm("d7");
asm volatile (
"vld4.u8 {d0-d3},[%[src]]!;"
"vld4.u8 {d4-d7},[%[dst]];"
: "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3),
"=w" (d4), "=w" (d5), "=w" (d6), "=w" (d7),
[src] "+&r" (src)
: [dst] "r" (dst)
:
);
vsrc.val[0] = d0; vdst.val[0] = d4;
vsrc.val[1] = d1; vdst.val[1] = d5;
vsrc.val[2] = d2; vdst.val[2] = d6;
vsrc.val[3] = d3; vdst.val[3] = d7;
#endif
vres = procSIMD(vsrc, vdst);
vst4_u8((uint8_t*)dst, vres);
dst += 8;
#else // #ifdef SK_CPU_ARM32
asm volatile (
"ld4 {v0.8b - v3.8b}, [%[src]], #32 \t\n"
"ld4 {v4.8b - v7.8b}, [%[dst]] \t\n"
"blr %[proc] \t\n"
"st4 {v0.8b - v3.8b}, [%[dst]], #32 \t\n"
: [src] "+&r" (src), [dst] "+&r" (dst)
: [proc] "r" (procSIMD)
: "cc", "memory",
/* We don't know what proc is going to clobber so we must
* add everything that is not callee-saved.
*/
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9",
"x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18",
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16", "v17",
"v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26",
"v27", "v28", "v29", "v30", "v31"
);
#endif // #ifdef SK_CPU_ARM32
count -= 8;
}
// Leftovers
for (int i = 0; i < count; i++) {
dst[i] = proc(src[i], dst[i]);
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = proc(src[i], dstC);
if (a != 0xFF) {
C = SkFourByteInterp_neon(C, dstC, a);
}
dst[i] = C;
}
}
}
}
void SkNEONProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
while(count >= 8) {
uint16x8_t vdst, vres16;
uint8x8x4_t vdst32, vsrc, vres;
vdst = vld1q_u16(dst);
#ifdef SK_CPU_ARM64
vsrc = vld4_u8((uint8_t*)src);
#else
#if (__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ > 6))
asm volatile (
"vld4.u8 %h[vsrc], [%[src]]! \t\n"
: [vsrc] "=w" (vsrc), [src] "+&r" (src)
: :
);
#else
register uint8x8_t d0 asm("d0");
register uint8x8_t d1 asm("d1");
register uint8x8_t d2 asm("d2");
register uint8x8_t d3 asm("d3");
asm volatile (
"vld4.u8 {d0-d3},[%[src]]!;"
: "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3),
[src] "+&r" (src)
: :
);
vsrc.val[0] = d0;
vsrc.val[1] = d1;
vsrc.val[2] = d2;
vsrc.val[3] = d3;
#endif
#endif // #ifdef SK_CPU_ARM64
vdst32 = SkPixel16ToPixel32_neon8(vdst);
vres = procSIMD(vsrc, vdst32);
vres16 = SkPixel32ToPixel16_neon8(vres);
vst1q_u16(dst, vres16);
count -= 8;
dst += 8;
#ifdef SK_CPU_ARM64
src += 8;
#endif
}
for (int i = 0; i < count; i++) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
dst[i] = SkPixel32ToPixel16_ToU16(proc(src[i], dstC));
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
SkPMColor C = proc(src[i], dstC);
if (0xFF != a) {
C = SkFourByteInterp_neon(C, dstC, a);
}
dst[i] = SkPixel32ToPixel16_ToU16(C);
}
}
}
}
#ifndef SK_IGNORE_TO_STRING
void SkNEONProcCoeffXfermode::toString(SkString* str) const {
this->INHERITED::toString(str);
}
#endif
////////////////////////////////////////////////////////////////////////////////
SkXfermodeProcSIMD gNEONXfermodeProcs[] = {
NULL, // kClear_Mode
NULL, // kSrc_Mode
NULL, // kDst_Mode
NULL, // kSrcOver_Mode
dstover_modeproc_neon8,
srcin_modeproc_neon8,
dstin_modeproc_neon8,
srcout_modeproc_neon8,
dstout_modeproc_neon8,
srcatop_modeproc_neon8,
dstatop_modeproc_neon8,
xor_modeproc_neon8,
plus_modeproc_neon8,
modulate_modeproc_neon8,
screen_modeproc_neon8,
overlay_modeproc_neon8,
darken_modeproc_neon8,
lighten_modeproc_neon8,
NULL, // kColorDodge_Mode
NULL, // kColorBurn_Mode
hardlight_modeproc_neon8,
NULL, // kSoftLight_Mode
difference_modeproc_neon8,
exclusion_modeproc_neon8,
multiply_modeproc_neon8,
NULL, // kHue_Mode
NULL, // kSaturation_Mode
NULL, // kColor_Mode
NULL, // kLuminosity_Mode
};
SK_COMPILE_ASSERT(
SK_ARRAY_COUNT(gNEONXfermodeProcs) == SkXfermode::kLastMode + 1,
mode_count_arm
);
SkXfermodeProc gNEONXfermodeProcs1[] = {
NULL, // kClear_Mode
NULL, // kSrc_Mode
NULL, // kDst_Mode
NULL, // kSrcOver_Mode
NULL, // kDstOver_Mode
NULL, // kSrcIn_Mode
NULL, // kDstIn_Mode
NULL, // kSrcOut_Mode
NULL, // kDstOut_Mode
srcatop_modeproc_neon,
dstatop_modeproc_neon,
xor_modeproc_neon,
plus_modeproc_neon,
modulate_modeproc_neon,
NULL, // kScreen_Mode
NULL, // kOverlay_Mode
NULL, // kDarken_Mode
NULL, // kLighten_Mode
NULL, // kColorDodge_Mode
NULL, // kColorBurn_Mode
NULL, // kHardLight_Mode
NULL, // kSoftLight_Mode
NULL, // kDifference_Mode
NULL, // kExclusion_Mode
NULL, // kMultiply_Mode
NULL, // kHue_Mode
NULL, // kSaturation_Mode
NULL, // kColor_Mode
NULL, // kLuminosity_Mode
};
SK_COMPILE_ASSERT(
SK_ARRAY_COUNT(gNEONXfermodeProcs1) == SkXfermode::kLastMode + 1,
mode1_count_arm
);
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_neon(const ProcCoeff& rec,
SkXfermode::Mode mode) {
void* procSIMD = reinterpret_cast<void*>(gNEONXfermodeProcs[mode]);
if (procSIMD != NULL) {
return SkNEW_ARGS(SkNEONProcCoeffXfermode, (rec, mode, procSIMD));
}
return NULL;
}
SkXfermodeProc SkPlatformXfermodeProcFactory_impl_neon(SkXfermode::Mode mode) {
return gNEONXfermodeProcs1[mode];
}
|