aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkXfermode_opts.h
blob: b049c6315c8415dc8cb15ee2136fd7f96fd33cbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef Sk4pxXfermode_DEFINED
#define Sk4pxXfermode_DEFINED

#include "Sk4px.h"
#include "SkMSAN.h"
#include "SkNx.h"
#include "SkXfermode_proccoeff.h"

namespace {

// Most xfermodes can be done most efficiently 4 pixels at a time in 8 or 16-bit fixed point.
#define XFERMODE(Xfermode) \
    struct Xfermode { Sk4px operator()(const Sk4px&, const Sk4px&) const; }; \
    inline Sk4px Xfermode::operator()(const Sk4px& d, const Sk4px& s) const

XFERMODE(Clear) { return Sk4px::DupPMColor(0); }
XFERMODE(Src)   { return s; }
XFERMODE(Dst)   { return d; }
XFERMODE(SrcIn)   { return     s.approxMulDiv255(d.alphas()      ); }
XFERMODE(SrcOut)  { return     s.approxMulDiv255(d.alphas().inv()); }
XFERMODE(SrcOver) { return s + d.approxMulDiv255(s.alphas().inv()); }
XFERMODE(DstIn)   { return SrcIn  ()(s,d); }
XFERMODE(DstOut)  { return SrcOut ()(s,d); }
XFERMODE(DstOver) { return SrcOver()(s,d); }

// [ S * Da + (1 - Sa) * D]
XFERMODE(SrcATop) { return (s * d.alphas() + d * s.alphas().inv()).div255(); }
XFERMODE(DstATop) { return SrcATop()(s,d); }
//[ S * (1 - Da) + (1 - Sa) * D ]
XFERMODE(Xor) { return (s * d.alphas().inv() + d * s.alphas().inv()).div255(); }
// [S + D ]
XFERMODE(Plus) { return s.saturatedAdd(d); }
// [S * D ]
XFERMODE(Modulate) { return s.approxMulDiv255(d); }
// [S + D - S * D]
XFERMODE(Screen) {
    // Doing the math as S + (1-S)*D or S + (D - S*D) means the add and subtract can be done
    // in 8-bit space without overflow.  S + (1-S)*D is a touch faster because inv() is cheap.
    return s + d.approxMulDiv255(s.inv());
}
XFERMODE(Multiply) { return (s * d.alphas().inv() + d * s.alphas().inv() + s*d).div255(); }
// [ Sa + Da - Sa*Da, Sc + Dc - 2*min(Sc*Da, Dc*Sa) ]  (And notice Sa*Da == min(Sa*Da, Da*Sa).)
XFERMODE(Difference) {
    auto m = Sk4px::Wide::Min(s * d.alphas(), d * s.alphas()).div255();
    // There's no chance of underflow, and if we subtract m before adding s+d, no overflow.
    return (s - m) + (d - m.zeroAlphas());
}
// [ Sa + Da - Sa*Da, Sc + Dc - 2*Sc*Dc ]
XFERMODE(Exclusion) {
    auto p = s.approxMulDiv255(d);
    // There's no chance of underflow, and if we subtract p before adding src+dst, no overflow.
    return (s - p) + (d - p.zeroAlphas());
}

// We take care to use exact math for these next few modes where alphas
// and colors are calculated using significantly different math.  We need
// to preserve premul invariants, and exact math makes this easier.
//
// TODO: Some of these implementations might be able to be sped up a bit
// while maintaining exact math, but let's follow up with that.

XFERMODE(HardLight) {
    auto sa = s.alphas(),
         da = d.alphas();

    auto srcover = s + (d * sa.inv()).div255();

    auto isLite = ((sa-s) < s).widenLoHi();

    auto lite = sa*da - ((da-d)*(sa-s) << 1),
         dark = s*d << 1,
         both = s*da.inv() + d*sa.inv();

    auto alphas = srcover;
    auto colors = (both + isLite.thenElse(lite, dark)).div255();
    return alphas.zeroColors() + colors.zeroAlphas();
}
XFERMODE(Overlay) { return HardLight()(s,d); }

XFERMODE(Darken) {
    auto sa = s.alphas(),
         da = d.alphas();

    auto sda = (s*da).div255(),
         dsa = (d*sa).div255();

    auto srcover = s + (d * sa.inv()).div255(),
         dstover = d + (s * da.inv()).div255();
    auto alphas = srcover,
         colors = (sda < dsa).thenElse(srcover, dstover);
    return alphas.zeroColors() + colors.zeroAlphas();
}
XFERMODE(Lighten) {
    auto sa = s.alphas(),
         da = d.alphas();

    auto sda = (s*da).div255(),
         dsa = (d*sa).div255();

    auto srcover = s + (d * sa.inv()).div255(),
         dstover = d + (s * da.inv()).div255();
    auto alphas = srcover,
         colors = (dsa < sda).thenElse(srcover, dstover);
    return alphas.zeroColors() + colors.zeroAlphas();
}
#undef XFERMODE

// Some xfermodes use math like divide or sqrt that's best done in floats 1 pixel at a time.
#define XFERMODE(Xfermode) \
    struct Xfermode { Sk4f operator()(const Sk4f&, const Sk4f&) const; }; \
    inline Sk4f Xfermode::operator()(const Sk4f& d, const Sk4f& s) const

static inline Sk4f a_rgb(const Sk4f& a, const Sk4f& rgb) {
    static_assert(SK_A32_SHIFT == 24, "");
    return a * Sk4f(0,0,0,1) + rgb * Sk4f(1,1,1,0);
}
static inline Sk4f alphas(const Sk4f& f) {
    return f.kth<SK_A32_SHIFT/8>();
}

XFERMODE(ColorDodge) {
    auto sa = alphas(s),
         da = alphas(d),
         isa = Sk4f(1)-sa,
         ida = Sk4f(1)-da;

    auto srcover = s + d*isa,
         dstover = d + s*ida,
         otherwise = sa * Sk4f::Min(da, (d*sa)*(sa-s).approxInvert()) + s*ida + d*isa;

    // Order matters here, preferring d==0 over s==sa.
    auto colors = (d == Sk4f(0)).thenElse(dstover,
                  (s ==      sa).thenElse(srcover,
                                          otherwise));
    return a_rgb(srcover, colors);
}
XFERMODE(ColorBurn) {
    auto sa = alphas(s),
         da = alphas(d),
         isa = Sk4f(1)-sa,
         ida = Sk4f(1)-da;

    auto srcover = s + d*isa,
         dstover = d + s*ida,
         otherwise = sa*(da-Sk4f::Min(da, (da-d)*sa*s.approxInvert())) + s*ida + d*isa;

    // Order matters here, preferring d==da over s==0.
    auto colors = (d ==      da).thenElse(dstover,
                  (s == Sk4f(0)).thenElse(srcover,
                                          otherwise));
    return a_rgb(srcover, colors);
}
XFERMODE(SoftLight) {
    auto sa = alphas(s),
         da = alphas(d),
         isa = Sk4f(1)-sa,
         ida = Sk4f(1)-da;

    // Some common terms.
    auto m  = (da > Sk4f(0)).thenElse(d / da, Sk4f(0)),
         s2 = Sk4f(2)*s,
         m4 = Sk4f(4)*m;

    // The logic forks three ways:
    //    1. dark src?
    //    2. light src, dark dst?
    //    3. light src, light dst?
    auto darkSrc = d*(sa + (s2 - sa)*(Sk4f(1) - m)),        // Used in case 1.
         darkDst = (m4*m4 + m4)*(m - Sk4f(1)) + Sk4f(7)*m,  // Used in case 2.
         liteDst = m.sqrt() - m,                            // Used in case 3.
         liteSrc = d*sa + da*(s2-sa)*(Sk4f(4)*d <= da).thenElse(darkDst, liteDst); // Case 2 or 3?

    auto alpha  = s + d*isa;
    auto colors = s*ida + d*isa + (s2 <= sa).thenElse(darkSrc, liteSrc);           // Case 1 or 2/3?

    return a_rgb(alpha, colors);
}
#undef XFERMODE

// A reasonable fallback mode for doing AA is to simply apply the transfermode first,
// then linearly interpolate the AA.
template <typename Xfermode>
static Sk4px xfer_aa(const Sk4px& d, const Sk4px& s, const Sk4px& aa) {
    Sk4px bw = Xfermode()(d, s);
    return (bw * aa + d * aa.inv()).div255();
}

// For some transfermodes we specialize AA, either for correctness or performance.
#define XFERMODE_AA(Xfermode) \
    template <> Sk4px xfer_aa<Xfermode>(const Sk4px& d, const Sk4px& s, const Sk4px& aa)

// Plus' clamp needs to happen after AA.  skia:3852
XFERMODE_AA(Plus) {  // [ clamp( (1-AA)D + (AA)(S+D) ) == clamp(D + AA*S) ]
    return d.saturatedAdd(s.approxMulDiv255(aa));
}

#undef XFERMODE_AA

// Src and Clear modes are safe to use with unitialized dst buffers,
// even if the implementation branches based on bytes from dst (e.g. asserts in Debug mode).
// For those modes, just lie to MSAN that dst is always intialized.
template <typename Xfermode> static void mark_dst_initialized_if_safe(void*, void*) {}
template <> void mark_dst_initialized_if_safe<Src>(void* dst, void* end) {
    sk_msan_mark_initialized(dst, end, "Src doesn't read dst.");
}
template <> void mark_dst_initialized_if_safe<Clear>(void* dst, void* end) {
    sk_msan_mark_initialized(dst, end, "Clear doesn't read dst.");
}

template <typename Xfermode>
class Sk4pxXfermode : public SkProcCoeffXfermode {
public:
    Sk4pxXfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
        : INHERITED(rec, mode) {}

    void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
        mark_dst_initialized_if_safe<Xfermode>(dst, dst+n);
        if (nullptr == aa) {
            Sk4px::MapDstSrc(n, dst, src, Xfermode());
        } else {
            Sk4px::MapDstSrcAlpha(n, dst, src, aa, xfer_aa<Xfermode>);
        }
    }

    void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
        mark_dst_initialized_if_safe<Xfermode>(dst, dst+n);
        SkPMColor dst32[4];
        while (n >= 4) {
            dst32[0] = SkPixel16ToPixel32(dst[0]);
            dst32[1] = SkPixel16ToPixel32(dst[1]);
            dst32[2] = SkPixel16ToPixel32(dst[2]);
            dst32[3] = SkPixel16ToPixel32(dst[3]);

            this->xfer32(dst32, src, 4, aa);

            dst[0] = SkPixel32ToPixel16(dst32[0]);
            dst[1] = SkPixel32ToPixel16(dst32[1]);
            dst[2] = SkPixel32ToPixel16(dst32[2]);
            dst[3] = SkPixel32ToPixel16(dst32[3]);

            dst += 4;
            src += 4;
            aa  += aa ? 4 : 0;
            n -= 4;
        }
        while (n) {
            SkPMColor dst32 = SkPixel16ToPixel32(*dst);
            this->xfer32(&dst32, src, 1, aa);
            *dst = SkPixel32ToPixel16(dst32);

            dst += 1;
            src += 1;
            aa  += aa ? 1 : 0;
            n   -= 1;
        }
    }

private:
    typedef SkProcCoeffXfermode INHERITED;
};

template <typename Xfermode>
class Sk4fXfermode : public SkProcCoeffXfermode {
public:
    Sk4fXfermode(const ProcCoeff& rec, SkXfermode::Mode mode)
        : INHERITED(rec, mode) {}

    void xfer32(SkPMColor dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
        for (int i = 0; i < n; i++) {
            dst[i] = Xfer32_1(dst[i], src[i], aa ? aa+i : nullptr);
        }
    }

    void xfer16(uint16_t dst[], const SkPMColor src[], int n, const SkAlpha aa[]) const override {
        for (int i = 0; i < n; i++) {
            SkPMColor dst32 = SkPixel16ToPixel32(dst[i]);
            dst32 = Xfer32_1(dst32, src[i], aa ? aa+i : nullptr);
            dst[i] = SkPixel32ToPixel16(dst32);
        }
    }

private:
    static SkPMColor Xfer32_1(SkPMColor dst, const SkPMColor src, const SkAlpha* aa) {
        Sk4f d = Load(dst),
             s = Load(src),
             b = Xfermode()(d, s);
        if (aa) {
            Sk4f a = Sk4f(*aa) * Sk4f(1.0f/255);
            b = b*a + d*(Sk4f(1)-a);
        }
        return Round(b);
    }

    static Sk4f Load(SkPMColor c) {
        return SkNx_cast<float>(Sk4b::Load(&c)) * Sk4f(1.0f/255);
    }

    static SkPMColor Round(const Sk4f& f) {
        SkPMColor c;
        SkNx_cast<uint8_t>(f * Sk4f(255) + Sk4f(0.5f)).store(&c);
        return c;
    }

    typedef SkProcCoeffXfermode INHERITED;
};

} // namespace

namespace SK_OPTS_NS {

static SkXfermode* create_xfermode(const ProcCoeff& rec, SkXfermode::Mode mode) {
    switch (mode) {
#define CASE(Xfermode) \
    case SkXfermode::k##Xfermode##_Mode: return new Sk4pxXfermode<Xfermode>(rec, mode)
        CASE(Clear);
        CASE(Src);
        CASE(Dst);
        CASE(SrcOver);
        CASE(DstOver);
        CASE(SrcIn);
        CASE(DstIn);
        CASE(SrcOut);
        CASE(DstOut);
        CASE(SrcATop);
        CASE(DstATop);
        CASE(Xor);
        CASE(Plus);
        CASE(Modulate);
        CASE(Screen);
        CASE(Multiply);
        CASE(Difference);
        CASE(Exclusion);
        CASE(HardLight);
        CASE(Overlay);
        CASE(Darken);
        CASE(Lighten);
    #undef CASE

#define CASE(Xfermode) \
    case SkXfermode::k##Xfermode##_Mode: return new Sk4fXfermode<Xfermode>(rec, mode)
        CASE(ColorDodge);
        CASE(ColorBurn);
        CASE(SoftLight);
    #undef CASE

        default: break;
    }
    return nullptr;
}

} // namespace SK_OPTS_NS

#endif//Sk4pxXfermode_DEFINED