1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "SkHalf.h"
#include "SkPM4f.h"
#include "SkRasterPipeline.h"
#include "SkSRGB.h"
using Kernel_Sk4f = void(void*, size_t, size_t, Sk4f&, Sk4f&, Sk4f&, Sk4f&,
Sk4f&, Sk4f&, Sk4f&, Sk4f&);
// These are always static, and we _really_ want them to inline.
// If you find yourself wanting a non-inline stage, write a SkRasterPipeline::Fn directly.
#define KERNEL_Sk4f(name) \
static SK_ALWAYS_INLINE void name(void* ctx, size_t x, size_t tail, \
Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, \
Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da)
template <Kernel_Sk4f kernel, bool kCallNext>
static inline void SK_VECTORCALL stage_4(SkRasterPipeline::Stage* st, size_t x, size_t tail,
Sk4f r, Sk4f g, Sk4f b, Sk4f a,
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) {
// Passing 0 lets the optimizer completely drop any "if (tail) {...}" code in kernel.
kernel(st->ctx<void*>(), x,0, r,g,b,a, dr,dg,db,da);
if (kCallNext) {
st->next(x,tail, r,g,b,a, dr,dg,db,da); // It's faster to pass t here than 0.
}
}
template <Kernel_Sk4f kernel, bool kCallNext>
static inline void SK_VECTORCALL stage_1_3(SkRasterPipeline::Stage* st, size_t x, size_t tail,
Sk4f r, Sk4f g, Sk4f b, Sk4f a,
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) {
#if defined(__clang__)
__builtin_assume(tail > 0); // This flourish lets Clang compile away any tail==0 code.
#endif
kernel(st->ctx<void*>(), x,tail, r,g,b,a, dr,dg,db,da);
if (kCallNext) {
st->next(x,tail, r,g,b,a, dr,dg,db,da);
}
}
// Many xfermodes apply the same logic to each channel.
#define RGBA_XFERMODE_Sk4f(name) \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da); \
static void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x, size_t tail, \
Sk4f r, Sk4f g, Sk4f b, Sk4f a, \
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) { \
r = name##_kernel(r,a,dr,da); \
g = name##_kernel(g,a,dg,da); \
b = name##_kernel(b,a,db,da); \
a = name##_kernel(a,a,da,da); \
st->next(x,tail, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da)
// Most of the rest apply the same logic to color channels and use srcover's alpha logic.
#define RGB_XFERMODE_Sk4f(name) \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da); \
static void SK_VECTORCALL name(SkRasterPipeline::Stage* st, size_t x, size_t tail, \
Sk4f r, Sk4f g, Sk4f b, Sk4f a, \
Sk4f dr, Sk4f dg, Sk4f db, Sk4f da) { \
r = name##_kernel(r,a,dr,da); \
g = name##_kernel(g,a,dg,da); \
b = name##_kernel(b,a,db,da); \
a = a + (da * (1.0f-a)); \
st->next(x,tail, r,g,b,a, dr,dg,db,da); \
} \
static SK_ALWAYS_INLINE Sk4f name##_kernel(const Sk4f& s, const Sk4f& sa, \
const Sk4f& d, const Sk4f& da)
namespace SK_OPTS_NS {
// Clamp colors into [0,1] premul (e.g. just before storing back to memory).
static void clamp_01_premul(Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a) {
a = Sk4f::Max(a, 0.0f);
r = Sk4f::Max(r, 0.0f);
g = Sk4f::Max(g, 0.0f);
b = Sk4f::Max(b, 0.0f);
a = Sk4f::Min(a, 1.0f);
r = Sk4f::Min(r, a);
g = Sk4f::Min(g, a);
b = Sk4f::Min(b, a);
}
static Sk4f inv(const Sk4f& x) { return 1.0f - x; }
static Sk4f lerp(const Sk4f& from, const Sk4f& to, const Sk4f& cov) {
return from + (to-from)*cov;
}
template <typename T>
static SkNx<4,T> load_tail(size_t tail, const T* src) {
if (tail) {
return SkNx<4,T>(src[0], (tail>1 ? src[1] : 0), (tail>2 ? src[2] : 0), 0);
}
return SkNx<4,T>::Load(src);
}
template <typename T>
static void store_tail(size_t tail, const SkNx<4,T>& v, T* dst) {
switch(tail) {
case 0: return v.store(dst);
case 3: dst[2] = v[2];
case 2: dst[1] = v[1];
case 1: dst[0] = v[0];
}
}
static void from_565(const Sk4h& _565, Sk4f* r, Sk4f* g, Sk4f* b) {
Sk4i _32_bit = SkNx_cast<int>(_565);
*r = SkNx_cast<float>(_32_bit & SK_R16_MASK_IN_PLACE) * (1.0f / SK_R16_MASK_IN_PLACE);
*g = SkNx_cast<float>(_32_bit & SK_G16_MASK_IN_PLACE) * (1.0f / SK_G16_MASK_IN_PLACE);
*b = SkNx_cast<float>(_32_bit & SK_B16_MASK_IN_PLACE) * (1.0f / SK_B16_MASK_IN_PLACE);
}
static Sk4h to_565(const Sk4f& r, const Sk4f& g, const Sk4f& b) {
return SkNx_cast<uint16_t>( Sk4f_round(r * SK_R16_MASK) << SK_R16_SHIFT
| Sk4f_round(g * SK_G16_MASK) << SK_G16_SHIFT
| Sk4f_round(b * SK_B16_MASK) << SK_B16_SHIFT);
}
// The default shader produces a constant color (from the SkPaint).
KERNEL_Sk4f(constant_color) {
auto color = (const SkPM4f*)ctx;
r = color->r();
g = color->g();
b = color->b();
a = color->a();
}
// s' = d(1-c) + sc, for a constant c.
KERNEL_Sk4f(lerp_constant_float) {
Sk4f c = *(const float*)ctx;
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// s' = sc for 8-bit c.
KERNEL_Sk4f(scale_u8) {
auto ptr = (const uint8_t*)ctx + x;
Sk4f c = SkNx_cast<float>(load_tail(tail, ptr)) * (1/255.0f);
r = r*c;
g = g*c;
b = b*c;
a = a*c;
}
// s' = d(1-c) + sc for 8-bit c.
KERNEL_Sk4f(lerp_u8) {
auto ptr = (const uint8_t*)ctx + x;
Sk4f c = SkNx_cast<float>(load_tail(tail, ptr)) * (1/255.0f);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// s' = d(1-c) + sc for 565 c.
KERNEL_Sk4f(lerp_565) {
auto ptr = (const uint16_t*)ctx + x;
Sk4f cr, cg, cb;
from_565(load_tail(tail, ptr), &cr, &cg, &cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = 1.0f;
}
KERNEL_Sk4f(load_d_565) {
auto ptr = (const uint16_t*)ctx + x;
from_565(load_tail(tail, ptr), &dr,&dg,&db);
da = 1.0f;
}
KERNEL_Sk4f(load_s_565) {
auto ptr = (const uint16_t*)ctx + x;
from_565(load_tail(tail, ptr), &r,&g,&b);
a = 1.0f;
}
KERNEL_Sk4f(store_565) {
clamp_01_premul(r,g,b,a);
auto ptr = (uint16_t*)ctx + x;
store_tail(tail, to_565(r,g,b), ptr);
}
KERNEL_Sk4f(load_d_f16) {
auto ptr = (const uint64_t*)ctx + x;
if (tail) {
auto p0 = SkHalfToFloat_finite_ftz(ptr[0]) ,
p1 = tail>1 ? SkHalfToFloat_finite_ftz(ptr[1]) : Sk4f{0},
p2 = tail>2 ? SkHalfToFloat_finite_ftz(ptr[2]) : Sk4f{0};
dr = { p0[0],p1[0],p2[0],0 };
dg = { p0[1],p1[1],p2[1],0 };
db = { p0[2],p1[2],p2[2],0 };
da = { p0[3],p1[3],p2[3],0 };
return;
}
Sk4h rh, gh, bh, ah;
Sk4h::Load4(ptr, &rh, &gh, &bh, &ah);
dr = SkHalfToFloat_finite_ftz(rh);
dg = SkHalfToFloat_finite_ftz(gh);
db = SkHalfToFloat_finite_ftz(bh);
da = SkHalfToFloat_finite_ftz(ah);
}
KERNEL_Sk4f(load_s_f16) {
auto ptr = (const uint64_t*)ctx + x;
if (tail) {
auto p0 = SkHalfToFloat_finite_ftz(ptr[0]) ,
p1 = tail>1 ? SkHalfToFloat_finite_ftz(ptr[1]) : Sk4f{0},
p2 = tail>2 ? SkHalfToFloat_finite_ftz(ptr[2]) : Sk4f{0};
r = { p0[0],p1[0],p2[0],0 };
g = { p0[1],p1[1],p2[1],0 };
b = { p0[2],p1[2],p2[2],0 };
a = { p0[3],p1[3],p2[3],0 };
return;
}
Sk4h rh, gh, bh, ah;
Sk4h::Load4(ptr, &rh, &gh, &bh, &ah);
r = SkHalfToFloat_finite_ftz(rh);
g = SkHalfToFloat_finite_ftz(gh);
b = SkHalfToFloat_finite_ftz(bh);
a = SkHalfToFloat_finite_ftz(ah);
}
KERNEL_Sk4f(store_f16) {
clamp_01_premul(r,g,b,a);
auto ptr = (uint64_t*)ctx + x;
switch (tail) {
case 0: return Sk4h::Store4(ptr, SkFloatToHalf_finite_ftz(r),
SkFloatToHalf_finite_ftz(g),
SkFloatToHalf_finite_ftz(b),
SkFloatToHalf_finite_ftz(a));
case 3: SkFloatToHalf_finite_ftz({r[2], g[2], b[2], a[2]}).store(ptr+2);
case 2: SkFloatToHalf_finite_ftz({r[1], g[1], b[1], a[1]}).store(ptr+1);
case 1: SkFloatToHalf_finite_ftz({r[0], g[0], b[0], a[0]}).store(ptr+0);
}
}
// Load 8-bit SkPMColor-order sRGB.
KERNEL_Sk4f(load_d_srgb) {
auto ptr = (const uint32_t*)ctx + x;
auto px = load_tail(tail, (const int*)ptr);
dr = sk_linear_from_srgb_math((px >> SK_R32_SHIFT) & 0xff);
dg = sk_linear_from_srgb_math((px >> SK_G32_SHIFT) & 0xff);
db = sk_linear_from_srgb_math((px >> SK_B32_SHIFT) & 0xff);
da = (1/255.0f)*SkNx_cast<float>((px >> SK_A32_SHIFT) & 0xff);
}
KERNEL_Sk4f(load_s_srgb) {
auto ptr = (const uint32_t*)ctx + x;
auto px = load_tail(tail, (const int*)ptr);
r = sk_linear_from_srgb_math((px >> SK_R32_SHIFT) & 0xff);
g = sk_linear_from_srgb_math((px >> SK_G32_SHIFT) & 0xff);
b = sk_linear_from_srgb_math((px >> SK_B32_SHIFT) & 0xff);
a = (1/255.0f)*SkNx_cast<float>((px >> SK_A32_SHIFT) & 0xff);
}
KERNEL_Sk4f(store_srgb) {
clamp_01_premul(r,g,b,a);
auto ptr = (uint32_t*)ctx + x;
store_tail(tail, ( sk_linear_to_srgb_noclamp(r) << SK_R32_SHIFT
| sk_linear_to_srgb_noclamp(g) << SK_G32_SHIFT
| sk_linear_to_srgb_noclamp(b) << SK_B32_SHIFT
| Sk4f_round(255.0f * a) << SK_A32_SHIFT), (int*)ptr);
}
RGBA_XFERMODE_Sk4f(clear) { return 0.0f; }
//RGBA_XFERMODE_Sk4f(src) { return s; } // This would be a no-op stage, so we just omit it.
RGBA_XFERMODE_Sk4f(dst) { return d; }
RGBA_XFERMODE_Sk4f(srcatop) { return s*da + d*inv(sa); }
RGBA_XFERMODE_Sk4f(srcin) { return s * da; }
RGBA_XFERMODE_Sk4f(srcout) { return s * inv(da); }
RGBA_XFERMODE_Sk4f(srcover) { return s + inv(sa)*d; }
RGBA_XFERMODE_Sk4f(dstatop) { return srcatop_kernel(d,da,s,sa); }
RGBA_XFERMODE_Sk4f(dstin) { return srcin_kernel (d,da,s,sa); }
RGBA_XFERMODE_Sk4f(dstout) { return srcout_kernel (d,da,s,sa); }
RGBA_XFERMODE_Sk4f(dstover) { return srcover_kernel(d,da,s,sa); }
RGBA_XFERMODE_Sk4f(modulate) { return s*d; }
RGBA_XFERMODE_Sk4f(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
RGBA_XFERMODE_Sk4f(plus_) { return s + d; }
RGBA_XFERMODE_Sk4f(screen) { return s + d - s*d; }
RGBA_XFERMODE_Sk4f(xor_) { return s*inv(da) + d*inv(sa); }
RGB_XFERMODE_Sk4f(colorburn) {
return (d == da ).thenElse(d + s*inv(da),
(s == 0.0f).thenElse(s + d*inv(sa),
sa*(da - Sk4f::Min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
}
RGB_XFERMODE_Sk4f(colordodge) {
return (d == 0.0f).thenElse(d + s*inv(da),
(s == sa ).thenElse(s + d*inv(sa),
sa*Sk4f::Min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
}
RGB_XFERMODE_Sk4f(darken) { return s + d - Sk4f::Max(s*da, d*sa); }
RGB_XFERMODE_Sk4f(difference) { return s + d - 2.0f*Sk4f::Min(s*da,d*sa); }
RGB_XFERMODE_Sk4f(exclusion) { return s + d - 2.0f*s*d; }
RGB_XFERMODE_Sk4f(hardlight) {
return s*inv(da) + d*inv(sa)
+ (2.0f*s <= sa).thenElse(2.0f*s*d, sa*da - 2.0f*(da-d)*(sa-s));
}
RGB_XFERMODE_Sk4f(lighten) { return s + d - Sk4f::Min(s*da, d*sa); }
RGB_XFERMODE_Sk4f(overlay) { return hardlight_kernel(d,da,s,sa); }
RGB_XFERMODE_Sk4f(softlight) {
Sk4f m = (da > 0.0f).thenElse(d / da, 0.0f),
s2 = 2.0f*s,
m4 = 4.0f*m;
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
Sk4f darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = m.rsqrt().invert() - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * (4.0f*d <= da).thenElse(darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + (s2 <= sa).thenElse(darkSrc, liteSrc); // 1 or (2 or 3)?
}
}
#undef KERNEL_Sk4f
#undef RGB_XFERMODE_Sk4f
#undef RGB_XFERMODE_Sk4f
#endif//SkRasterPipeline_opts_DEFINED
|