1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_sse_DEFINED
#define SkNx_sse_DEFINED
// This file may assume <= SSE2, but must check SK_CPU_SSE_LEVEL for anything more recent.
// If you do, make sure this is in a static inline function... anywhere else risks violating ODR.
#define SKNX_IS_FAST
template <>
class SkNx<2, float> {
public:
SkNx(const __m128& vec) : fVec(vec) {}
SkNx() {}
SkNx(float val) : fVec(_mm_set1_ps(val)) {}
static SkNx Load(const void* ptr) {
return _mm_castsi128_ps(_mm_loadl_epi64((const __m128i*)ptr));
}
SkNx(float a, float b) : fVec(_mm_setr_ps(a,b,0,0)) {}
void store(void* ptr) const { _mm_storel_pi((__m64*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); }
SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); }
SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); }
SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); }
static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); }
static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); }
SkNx sqrt () const { return _mm_sqrt_ps (fVec); }
SkNx rsqrt0() const { return _mm_rsqrt_ps(fVec); }
SkNx rsqrt1() const { return this->rsqrt0(); }
SkNx rsqrt2() const { return this->rsqrt1(); }
SkNx invert() const { return SkNx(1) / *this; }
SkNx approxInvert() const { return _mm_rcp_ps(fVec); }
float operator[](int k) const {
SkASSERT(0 <= k && k < 2);
union { __m128 v; float fs[4]; } pun = {fVec};
return pun.fs[k&1];
}
template <int k> float kth() const { return (*this)[k]; }
bool allTrue() const { return 0xff == (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }
bool anyTrue() const { return 0x00 != (_mm_movemask_epi8(_mm_castps_si128(fVec)) & 0xff); }
__m128 fVec;
};
template <>
class SkNx<4, float> {
public:
SkNx(const __m128& vec) : fVec(vec) {}
SkNx() {}
SkNx(float val) : fVec( _mm_set1_ps(val) ) {}
static SkNx Load(const void* ptr) { return _mm_loadu_ps((const float*)ptr); }
SkNx(float a, float b, float c, float d) : fVec(_mm_setr_ps(a,b,c,d)) {}
void store(void* ptr) const { _mm_storeu_ps((float*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_ps(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_ps(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mul_ps(fVec, o.fVec); }
SkNx operator / (const SkNx& o) const { return _mm_div_ps(fVec, o.fVec); }
SkNx operator == (const SkNx& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
SkNx operator != (const SkNx& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
SkNx operator < (const SkNx& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
SkNx operator > (const SkNx& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
SkNx operator <= (const SkNx& o) const { return _mm_cmple_ps (fVec, o.fVec); }
SkNx operator >= (const SkNx& o) const { return _mm_cmpge_ps (fVec, o.fVec); }
static SkNx Min(const SkNx& l, const SkNx& r) { return _mm_min_ps(l.fVec, r.fVec); }
static SkNx Max(const SkNx& l, const SkNx& r) { return _mm_max_ps(l.fVec, r.fVec); }
SkNx abs() const { return _mm_andnot_ps(_mm_set1_ps(-0.0f), fVec); }
SkNx sqrt () const { return _mm_sqrt_ps (fVec); }
SkNx rsqrt0() const { return _mm_rsqrt_ps(fVec); }
SkNx rsqrt1() const { return this->rsqrt0(); }
SkNx rsqrt2() const { return this->rsqrt1(); }
SkNx invert() const { return SkNx(1) / *this; }
SkNx approxInvert() const { return _mm_rcp_ps(fVec); }
float operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { __m128 v; float fs[4]; } pun = {fVec};
return pun.fs[k&3];
}
template <int k> float kth() const { return (*this)[k]; }
bool allTrue() const { return 0xffff == _mm_movemask_epi8(_mm_castps_si128(fVec)); }
bool anyTrue() const { return 0x0000 != _mm_movemask_epi8(_mm_castps_si128(fVec)); }
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return _mm_or_ps(_mm_and_ps (fVec, t.fVec),
_mm_andnot_ps(fVec, e.fVec));
}
__m128 fVec;
};
template <>
class SkNx<4, uint16_t> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {}
static SkNx Load(const void* ptr) { return _mm_loadl_epi64((const __m128i*)ptr); }
SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) : fVec(_mm_setr_epi16(a,b,c,d,0,0,0,0)) {}
void store(void* ptr) const { _mm_storel_epi64((__m128i*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); }
SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); }
SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); }
uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 4);
union { __m128i v; uint16_t us[8]; } pun = {fVec};
return pun.us[k&3];
}
template <int k> uint16_t kth() const { return (*this)[k]; }
__m128i fVec;
};
template <>
class SkNx<8, uint16_t> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint16_t val) : fVec(_mm_set1_epi16(val)) {}
static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
uint16_t e, uint16_t f, uint16_t g, uint16_t h) : fVec(_mm_setr_epi16(a,b,c,d,e,f,g,h)) {}
void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_epi16(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_epi16(fVec, o.fVec); }
SkNx operator * (const SkNx& o) const { return _mm_mullo_epi16(fVec, o.fVec); }
SkNx operator << (int bits) const { return _mm_slli_epi16(fVec, bits); }
SkNx operator >> (int bits) const { return _mm_srli_epi16(fVec, bits); }
static SkNx Min(const SkNx& a, const SkNx& b) {
// No unsigned _mm_min_epu16, so we'll shift into a space where we can use the
// signed version, _mm_min_epi16, then shift back.
const uint16_t top = 0x8000; // Keep this separate from _mm_set1_epi16 or MSVC will whine.
const __m128i top_8x = _mm_set1_epi16(top);
return _mm_add_epi8(top_8x, _mm_min_epi16(_mm_sub_epi8(a.fVec, top_8x),
_mm_sub_epi8(b.fVec, top_8x)));
}
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return _mm_or_si128(_mm_and_si128 (fVec, t.fVec),
_mm_andnot_si128(fVec, e.fVec));
}
uint16_t operator[](int k) const {
SkASSERT(0 <= k && k < 8);
union { __m128i v; uint16_t us[8]; } pun = {fVec};
return pun.us[k&7];
}
template <int k> uint16_t kth() const { return (*this)[k]; }
__m128i fVec;
};
template <>
class SkNx<4, uint8_t> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
static SkNx Load(const void* ptr) { return _mm_cvtsi32_si128(*(const int*)ptr); }
void store(void* ptr) const { *(int*)ptr = _mm_cvtsi128_si32(fVec); }
// TODO as needed
__m128i fVec;
};
template <>
class SkNx<16, uint8_t> {
public:
SkNx(const __m128i& vec) : fVec(vec) {}
SkNx() {}
SkNx(uint8_t val) : fVec(_mm_set1_epi8(val)) {}
static SkNx Load(const void* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d,
uint8_t e, uint8_t f, uint8_t g, uint8_t h,
uint8_t i, uint8_t j, uint8_t k, uint8_t l,
uint8_t m, uint8_t n, uint8_t o, uint8_t p)
: fVec(_mm_setr_epi8(a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p)) {}
void store(void* ptr) const { _mm_storeu_si128((__m128i*)ptr, fVec); }
SkNx saturatedAdd(const SkNx& o) const { return _mm_adds_epu8(fVec, o.fVec); }
SkNx operator + (const SkNx& o) const { return _mm_add_epi8(fVec, o.fVec); }
SkNx operator - (const SkNx& o) const { return _mm_sub_epi8(fVec, o.fVec); }
static SkNx Min(const SkNx& a, const SkNx& b) { return _mm_min_epu8(a.fVec, b.fVec); }
SkNx operator < (const SkNx& o) const {
// There's no unsigned _mm_cmplt_epu8, so we flip the sign bits then use a signed compare.
auto flip = _mm_set1_epi8(char(0x80));
return _mm_cmplt_epi8(_mm_xor_si128(flip, fVec), _mm_xor_si128(flip, o.fVec));
}
uint8_t operator[](int k) const {
SkASSERT(0 <= k && k < 16);
union { __m128i v; uint8_t us[16]; } pun = {fVec};
return pun.us[k&15];
}
template <int k> uint8_t kth() const { return (*this)[k]; }
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return _mm_or_si128(_mm_and_si128 (fVec, t.fVec),
_mm_andnot_si128(fVec, e.fVec));
}
__m128i fVec;
};
template<> /*static*/ inline Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) {
auto _32 = _mm_cvttps_epi32(src.fVec);
// Ideally we'd use _mm_packus_epi32 here. But that's SSE4.1+.
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
// With SSSE3, we can just shuffle the low 2 bytes from each lane right into place.
const int _ = ~0;
return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,1, 4,5, 8,9, 12,13, _,_,_,_,_,_,_,_));
#else
// With SSE2, we have to emulate _mm_packus_epi32 with _mm_packs_epi32:
_32 = _mm_sub_epi32(_32, _mm_set1_epi32((int)0x00008000));
return _mm_add_epi16(_mm_packs_epi32(_32, _32), _mm_set1_epi16((short)0x8000));
#endif
}
template<> /*static*/ inline Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) {
auto _32 = _mm_cvttps_epi32(src.fVec);
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
const int _ = ~0;
return _mm_shuffle_epi8(_32, _mm_setr_epi8(0,4,8,12, _,_,_,_, _,_,_,_, _,_,_,_));
#else
auto _16 = _mm_packus_epi16(_32, _32);
return _mm_packus_epi16(_16, _16);
#endif
}
template<> /*static*/ inline Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) {
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
const int _ = ~0;
auto _32 = _mm_shuffle_epi8(src.fVec, _mm_setr_epi8(0,_,_,_, 1,_,_,_, 2,_,_,_, 3,_,_,_));
#else
auto _16 = _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128()),
_32 = _mm_unpacklo_epi16(_16, _mm_setzero_si128());
#endif
return _mm_cvtepi32_ps(_32);
}
template<> /*static*/ inline Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) {
auto _32 = _mm_unpacklo_epi16(src.fVec, _mm_setzero_si128());
return _mm_cvtepi32_ps(_32);
}
static inline void Sk4f_ToBytes(uint8_t bytes[16],
const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) {
_mm_storeu_si128((__m128i*)bytes,
_mm_packus_epi16(_mm_packus_epi16(_mm_cvttps_epi32(a.fVec),
_mm_cvttps_epi32(b.fVec)),
_mm_packus_epi16(_mm_cvttps_epi32(c.fVec),
_mm_cvttps_epi32(d.fVec))));
}
template<> /*static*/ inline Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) {
return _mm_unpacklo_epi8(src.fVec, _mm_setzero_si128());
}
template<> /*static*/ inline Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) {
return _mm_packus_epi16(src.fVec, src.fVec);
}
#endif//SkNx_sse_DEFINED
|