aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkNx_neon.h
blob: 04db8781bc21371f9be6849a02107d81f55ed1e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkNx_neon_DEFINED
#define SkNx_neon_DEFINED

#include <arm_neon.h>

template <>
class SkNb<2, 4> {
public:
    SkNb(uint32x2_t vec) : fVec(vec) {}

    SkNb() {}
    bool allTrue() const { return vget_lane_u32(fVec, 0) && vget_lane_u32(fVec, 1); }
    bool anyTrue() const { return vget_lane_u32(fVec, 0) || vget_lane_u32(fVec, 1); }
private:
    uint32x2_t fVec;
};

template <>
class SkNb<4, 4> {
public:
    SkNb(uint32x4_t vec) : fVec(vec) {}

    SkNb() {}
    bool allTrue() const { return vgetq_lane_u32(fVec, 0) && vgetq_lane_u32(fVec, 1)
                               && vgetq_lane_u32(fVec, 2) && vgetq_lane_u32(fVec, 3); }
    bool anyTrue() const { return vgetq_lane_u32(fVec, 0) || vgetq_lane_u32(fVec, 1)
                               || vgetq_lane_u32(fVec, 2) || vgetq_lane_u32(fVec, 3); }
private:
    uint32x4_t fVec;
};

template <>
class SkNf<2, float> {
    typedef SkNb<2, 4> Nb;
public:
    SkNf(float32x2_t vec) : fVec(vec) {}

    SkNf() {}
    explicit SkNf(float val)           : fVec(vdup_n_f32(val)) {}
    static SkNf Load(const float vals[2]) { return vld1_f32(vals); }
    SkNf(float a, float b) { fVec = (float32x2_t) { a, b }; }

    void store(float vals[2]) const { vst1_f32(vals, fVec); }

    SkNf approxInvert() const {
        float32x2_t est0 = vrecpe_f32(fVec),
                    est1 = vmul_f32(vrecps_f32(est0, fVec), est0);
        return est1;
    }
    SkNf invert() const {
        float32x2_t est1 = this->approxInvert().fVec,
                    est2 = vmul_f32(vrecps_f32(est1, fVec), est1);
        return est2;
    }

    SkNf operator + (const SkNf& o) const { return vadd_f32(fVec, o.fVec); }
    SkNf operator - (const SkNf& o) const { return vsub_f32(fVec, o.fVec); }
    SkNf operator * (const SkNf& o) const { return vmul_f32(fVec, o.fVec); }
    SkNf operator / (const SkNf& o) const {
    #if defined(SK_CPU_ARM64)
        return vdiv_f32(fVec, o.fVec);
    #else
        return vmul_f32(fVec, o.invert().fVec);
    #endif
    }

    Nb operator == (const SkNf& o) const { return vceq_f32(fVec, o.fVec); }
    Nb operator  < (const SkNf& o) const { return vclt_f32(fVec, o.fVec); }
    Nb operator  > (const SkNf& o) const { return vcgt_f32(fVec, o.fVec); }
    Nb operator <= (const SkNf& o) const { return vcle_f32(fVec, o.fVec); }
    Nb operator >= (const SkNf& o) const { return vcge_f32(fVec, o.fVec); }
    Nb operator != (const SkNf& o) const { return vmvn_u32(vceq_f32(fVec, o.fVec)); }

    static SkNf Min(const SkNf& l, const SkNf& r) { return vmin_f32(l.fVec, r.fVec); }
    static SkNf Max(const SkNf& l, const SkNf& r) { return vmax_f32(l.fVec, r.fVec); }

    SkNf rsqrt() const {
        float32x2_t est0 = vrsqrte_f32(fVec),
                    est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
        return est1;
    }

    SkNf sqrt() const {
    #if defined(SK_CPU_ARM64)
        return vsqrt_f32(fVec);
    #else
        float32x2_t est1 = this->rsqrt().fVec,
        // An extra step of Newton's method to refine the estimate of 1/sqrt(this).
                    est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
        return vmul_f32(fVec, est2);
    #endif
    }

    template <int k> float kth() const {
        SkASSERT(0 <= k && k < 2);
        return vget_lane_f32(fVec, k&1);
    }

private:
    float32x2_t fVec;
};

#if defined(SK_CPU_ARM64)
template <>
class SkNb<2, 8> {
public:
    SkNb(uint64x2_t vec) : fVec(vec) {}

    SkNb() {}
    bool allTrue() const { return vgetq_lane_u64(fVec, 0) && vgetq_lane_u64(fVec, 1); }
    bool anyTrue() const { return vgetq_lane_u64(fVec, 0) || vgetq_lane_u64(fVec, 1); }
private:
    uint64x2_t fVec;
};

template <>
class SkNf<2, double> {
    typedef SkNb<2, 8> Nb;
public:
    SkNf(float64x2_t vec) : fVec(vec) {}

    SkNf() {}
    explicit SkNf(double val)           : fVec(vdupq_n_f64(val))  {}
    static SkNf Load(const double vals[2]) { return vld1q_f64(vals); }
    SkNf(double a, double b) { fVec = (float64x2_t) { a, b }; }

    void store(double vals[2]) const { vst1q_f64(vals, fVec); }

    SkNf operator + (const SkNf& o) const { return vaddq_f64(fVec, o.fVec); }
    SkNf operator - (const SkNf& o) const { return vsubq_f64(fVec, o.fVec); }
    SkNf operator * (const SkNf& o) const { return vmulq_f64(fVec, o.fVec); }
    SkNf operator / (const SkNf& o) const { return vdivq_f64(fVec, o.fVec); }

    Nb operator == (const SkNf& o) const { return vceqq_f64(fVec, o.fVec); }
    Nb operator  < (const SkNf& o) const { return vcltq_f64(fVec, o.fVec); }
    Nb operator  > (const SkNf& o) const { return vcgtq_f64(fVec, o.fVec); }
    Nb operator <= (const SkNf& o) const { return vcleq_f64(fVec, o.fVec); }
    Nb operator >= (const SkNf& o) const { return vcgeq_f64(fVec, o.fVec); }
    Nb operator != (const SkNf& o) const {
        return vreinterpretq_u64_u32(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(fVec, o.fVec))));
    }

    static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f64(l.fVec, r.fVec); }
    static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f64(l.fVec, r.fVec); }

    SkNf  sqrt() const { return vsqrtq_f64(fVec);  }
    SkNf rsqrt() const {
        float64x2_t est0 = vrsqrteq_f64(fVec),
                    est1 = vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0);
        return est1;
    }

    SkNf approxInvert() const {
        float64x2_t est0 = vrecpeq_f64(fVec),
                    est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0);
        return est1;
    }

    SkNf invert() const {
        float64x2_t est1 = this->approxInvert().fVec,
                    est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1),
                    est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2);
        return est3;
    }

    template <int k> double kth() const {
        SkASSERT(0 <= k && k < 2);
        return vgetq_lane_f64(fVec, k&1);
    }

private:
    float64x2_t fVec;
};
#endif//defined(SK_CPU_ARM64)

template <>
class SkNf<4, float> {
    typedef SkNb<4, 4> Nb;
public:
    SkNf(float32x4_t vec) : fVec(vec) {}

    SkNf() {}
    explicit SkNf(float val)           : fVec(vdupq_n_f32(val)) {}
    static SkNf Load(const float vals[4]) { return vld1q_f32(vals); }
    SkNf(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; }

    void store(float vals[4]) const { vst1q_f32(vals, fVec); }

    SkNf approxInvert() const {
        float32x4_t est0 = vrecpeq_f32(fVec),
                    est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0);
        return est1;
    }
    SkNf invert() const {
        float32x4_t est1 = this->approxInvert().fVec,
                    est2 = vmulq_f32(vrecpsq_f32(est1, fVec), est1);
        return est2;
    }

    SkNf operator + (const SkNf& o) const { return vaddq_f32(fVec, o.fVec); }
    SkNf operator - (const SkNf& o) const { return vsubq_f32(fVec, o.fVec); }
    SkNf operator * (const SkNf& o) const { return vmulq_f32(fVec, o.fVec); }
    SkNf operator / (const SkNf& o) const {
    #if defined(SK_CPU_ARM64)
        return vdivq_f32(fVec, o.fVec);
    #else
        return vmulq_f32(fVec, o.invert().fVec);
    #endif
    }

    Nb operator == (const SkNf& o) const { return vceqq_f32(fVec, o.fVec); }
    Nb operator  < (const SkNf& o) const { return vcltq_f32(fVec, o.fVec); }
    Nb operator  > (const SkNf& o) const { return vcgtq_f32(fVec, o.fVec); }
    Nb operator <= (const SkNf& o) const { return vcleq_f32(fVec, o.fVec); }
    Nb operator >= (const SkNf& o) const { return vcgeq_f32(fVec, o.fVec); }
    Nb operator != (const SkNf& o) const { return vmvnq_u32(vceqq_f32(fVec, o.fVec)); }

    static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f32(l.fVec, r.fVec); }
    static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f32(l.fVec, r.fVec); }

    SkNf rsqrt() const {
        float32x4_t est0 = vrsqrteq_f32(fVec),
                    est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0);
        return est1;
    }

    SkNf sqrt() const {
    #if defined(SK_CPU_ARM64)
        return vsqrtq_f32(fVec);
    #else
        float32x4_t est1 = this->rsqrt().fVec,
        // An extra step of Newton's method to refine the estimate of 1/sqrt(this).
                    est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1);
        return vmulq_f32(fVec, est2);
    #endif
    }

    template <int k> float kth() const {
        SkASSERT(0 <= k && k < 4);
        return vgetq_lane_f32(fVec, k&3);
    }

protected:
    float32x4_t fVec;
};

#endif//SkNx_neon_DEFINED