1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkColorXform_opts_DEFINED
#define SkColorXform_opts_DEFINED
#include "SkNx.h"
#include "SkColorPriv.h"
#include "SkHalf.h"
#include "SkSRGB.h"
#include "SkTemplates.h"
namespace SK_OPTS_NS {
static Sk4f linear_to_2dot2(const Sk4f& x) {
// x^(29/64) is a very good approximation of the true value, x^(1/2.2).
auto x2 = x.rsqrt(), // x^(-1/2)
x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32)
x64 = x32.rsqrt(); // x^(+1/64)
// 29 = 32 - 2 - 1
return 255.0f * x2.invert() * x32 * x64.invert();
}
static Sk4f clamp_0_to_255(const Sk4f& x) {
// The order of the arguments is important here. We want to make sure that NaN
// clamps to zero. Note that max(NaN, 0) = 0, while max(0, NaN) = NaN.
return Sk4f::Min(Sk4f::Max(x, 0.0f), 255.0f);
}
enum DstGamma {
// 8888
kSRGB_DstGamma,
k2Dot2_DstGamma,
kTable_DstGamma,
// F16
kLinear_DstGamma,
};
template <DstGamma kDstGamma>
static void color_xform_RGB1(void* dst, const uint32_t* src, int len,
const float* const srcTables[3], const float matrix[16],
const uint8_t* const dstTables[3]) {
Sk4f rXgXbX = Sk4f::Load(matrix + 0),
rYgYbY = Sk4f::Load(matrix + 4),
rZgZbZ = Sk4f::Load(matrix + 8);
if (len >= 4) {
Sk4f reds, greens, blues;
auto load_next_4 = [&reds, &greens, &blues, &src, &len, &srcTables] {
reds = Sk4f{srcTables[0][(src[0] >> 0) & 0xFF],
srcTables[0][(src[1] >> 0) & 0xFF],
srcTables[0][(src[2] >> 0) & 0xFF],
srcTables[0][(src[3] >> 0) & 0xFF]};
greens = Sk4f{srcTables[1][(src[0] >> 8) & 0xFF],
srcTables[1][(src[1] >> 8) & 0xFF],
srcTables[1][(src[2] >> 8) & 0xFF],
srcTables[1][(src[3] >> 8) & 0xFF]};
blues = Sk4f{srcTables[2][(src[0] >> 16) & 0xFF],
srcTables[2][(src[1] >> 16) & 0xFF],
srcTables[2][(src[2] >> 16) & 0xFF],
srcTables[2][(src[3] >> 16) & 0xFF]};
src += 4;
len -= 4;
};
Sk4f dstReds, dstGreens, dstBlues;
auto transform_4 = [&reds, &greens, &blues, &dstReds, &dstGreens, &dstBlues, &rXgXbX,
&rYgYbY, &rZgZbZ] {
dstReds = rXgXbX[0]*reds + rYgYbY[0]*greens + rZgZbZ[0]*blues;
dstGreens = rXgXbX[1]*reds + rYgYbY[1]*greens + rZgZbZ[1]*blues;
dstBlues = rXgXbX[2]*reds + rYgYbY[2]*greens + rZgZbZ[2]*blues;
};
auto store_4 = [&dstReds, &dstGreens, &dstBlues, &dst, &dstTables] {
if (kSRGB_DstGamma == kDstGamma || k2Dot2_DstGamma == kDstGamma) {
Sk4f (*linear_to_curve)(const Sk4f&) =
(kSRGB_DstGamma == kDstGamma) ? sk_linear_to_srgb : linear_to_2dot2;
dstReds = linear_to_curve(dstReds);
dstGreens = linear_to_curve(dstGreens);
dstBlues = linear_to_curve(dstBlues);
dstReds = clamp_0_to_255(dstReds);
dstGreens = clamp_0_to_255(dstGreens);
dstBlues = clamp_0_to_255(dstBlues);
auto rgba = (Sk4f_round(dstReds) << SK_R32_SHIFT)
| (Sk4f_round(dstGreens) << SK_G32_SHIFT)
| (Sk4f_round(dstBlues) << SK_B32_SHIFT)
| (Sk4i{ 0xFF << SK_A32_SHIFT});
rgba.store((uint32_t*) dst);
dst = SkTAddOffset<void>(dst, 4 * sizeof(uint32_t));
} else if (kTable_DstGamma == kDstGamma) {
Sk4f scaledReds = Sk4f::Min(Sk4f::Max(1023.0f * dstReds, 0.0f), 1023.0f);
Sk4f scaledGreens = Sk4f::Min(Sk4f::Max(1023.0f * dstGreens, 0.0f), 1023.0f);
Sk4f scaledBlues = Sk4f::Min(Sk4f::Max(1023.0f * dstBlues, 0.0f), 1023.0f);
Sk4i indicesReds = Sk4f_round(scaledReds);
Sk4i indicesGreens = Sk4f_round(scaledGreens);
Sk4i indicesBlues = Sk4f_round(scaledBlues);
uint32_t* dst32 = (uint32_t*) dst;
dst32[0] = dstTables[0][indicesReds [0]] << SK_R32_SHIFT
| dstTables[1][indicesGreens[0]] << SK_G32_SHIFT
| dstTables[2][indicesBlues [0]] << SK_B32_SHIFT
| 0xFF << SK_A32_SHIFT;
dst32[1] = dstTables[0][indicesReds [1]] << SK_R32_SHIFT
| dstTables[1][indicesGreens[1]] << SK_G32_SHIFT
| dstTables[2][indicesBlues [1]] << SK_B32_SHIFT
| 0xFF << SK_A32_SHIFT;
dst32[2] = dstTables[0][indicesReds [2]] << SK_R32_SHIFT
| dstTables[1][indicesGreens[2]] << SK_G32_SHIFT
| dstTables[2][indicesBlues [2]] << SK_B32_SHIFT
| 0xFF << SK_A32_SHIFT;
dst32[3] = dstTables[0][indicesReds [3]] << SK_R32_SHIFT
| dstTables[1][indicesGreens[3]] << SK_G32_SHIFT
| dstTables[2][indicesBlues [3]] << SK_B32_SHIFT
| 0xFF << SK_A32_SHIFT;
dst = SkTAddOffset<void>(dst, 4 * sizeof(uint32_t));
} else {
Sk4h_store4(dst, SkFloatToHalf_finite(dstReds),
SkFloatToHalf_finite(dstGreens),
SkFloatToHalf_finite(dstBlues),
SK_Half1);
dst = SkTAddOffset<void>(dst, 4 * sizeof(uint64_t));
}
};
load_next_4();
while (len >= 4) {
transform_4();
load_next_4();
store_4();
}
transform_4();
store_4();
}
while (len > 0) {
// Splat r,g,b across a register each.
auto r = Sk4f{srcTables[0][(*src >> 0) & 0xFF]},
g = Sk4f{srcTables[1][(*src >> 8) & 0xFF]},
b = Sk4f{srcTables[2][(*src >> 16) & 0xFF]};
auto dstPixel = rXgXbX*r + rYgYbY*g + rZgZbZ*b;
if (kSRGB_DstGamma == kDstGamma || k2Dot2_DstGamma == kDstGamma) {
Sk4f (*linear_to_curve)(const Sk4f&) =
(kSRGB_DstGamma == kDstGamma) ? sk_linear_to_srgb : linear_to_2dot2;
dstPixel = linear_to_curve(dstPixel);
dstPixel = clamp_0_to_255(dstPixel);
uint32_t rgba;
SkNx_cast<uint8_t>(Sk4f_round(dstPixel)).store(&rgba);
rgba |= 0xFF000000;
*((uint32_t*) dst) = SkSwizzle_RGBA_to_PMColor(rgba);
dst = SkTAddOffset<void>(dst, sizeof(uint32_t));
} else if (kTable_DstGamma == kDstGamma) {
Sk4f scaledPixel = Sk4f::Min(Sk4f::Max(1023.0f * dstPixel, 0.0f), 1023.0f);
Sk4i indices = Sk4f_round(scaledPixel);
*((uint32_t*) dst) = dstTables[0][indices[0]] << SK_R32_SHIFT
| dstTables[1][indices[1]] << SK_G32_SHIFT
| dstTables[2][indices[2]] << SK_B32_SHIFT
| 0xFF << SK_A32_SHIFT;
dst = SkTAddOffset<void>(dst, sizeof(uint32_t));
} else {
uint64_t rgba;
SkFloatToHalf_finite(dstPixel).store(&rgba);
rgba |= static_cast<uint64_t>(SK_Half1) << 48;
*((uint64_t*) dst) = rgba;
dst = SkTAddOffset<void>(dst, sizeof(uint64_t));
}
src += 1;
len -= 1;
}
}
static void color_xform_RGB1_to_2dot2(uint32_t* dst, const uint32_t* src, int len,
const float* const srcTables[3], const float matrix[12]) {
color_xform_RGB1<k2Dot2_DstGamma>(dst, src, len, srcTables, matrix, nullptr);
}
static void color_xform_RGB1_to_srgb(uint32_t* dst, const uint32_t* src, int len,
const float* const srcTables[3], const float matrix[12]) {
color_xform_RGB1<kSRGB_DstGamma>(dst, src, len, srcTables, matrix, nullptr);
}
static void color_xform_RGB1_to_table(uint32_t* dst, const uint32_t* src, int len,
const float* const srcTables[3], const float matrix[12],
const uint8_t* const dstTables[3]) {
color_xform_RGB1<kTable_DstGamma>(dst, src, len, srcTables, matrix, dstTables);
}
static void color_xform_RGB1_to_linear(uint64_t* dst, const uint32_t* src, int len,
const float* const srcTables[3], const float matrix[12]) {
color_xform_RGB1<kLinear_DstGamma>(dst, src, len, srcTables, matrix, nullptr);
}
} // namespace SK_OPTS_NS
#endif // SkColorXform_opts_DEFINED
|