aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkChecksum_opts.h
blob: 089e87c1a37520ff62a4477c9a1f8d83d389b7f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkChecksum_opts_DEFINED
#define SkChecksum_opts_DEFINED

#include "SkChecksum.h"
#include "SkTypes.h"

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42
    #include <immintrin.h>
#elif defined(SK_ARM_HAS_CRC32)
    #include <arm_acle.h>
#endif

namespace SK_OPTS_NS {

template <typename T>
static inline T unaligned_load(const uint8_t* src) {
    T val;
    memcpy(&val, src, sizeof(val));
    return val;
}

#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42 && (defined(__x86_64__) || defined(_M_X64))
    // This is not a CRC32.  It's Just A Hash that uses those instructions because they're fast.
    static uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t seed) {
        auto data = (const uint8_t*)vdata;

        // _mm_crc32_u64() operates on 64-bit registers, so we use uint64_t for a while.
        uint64_t hash = seed;
        if (bytes >= 24) {
            // We'll create 3 independent hashes, each using _mm_crc32_u64()
            // to hash 8 bytes per step.  Both 3 and independent are important:
            // we can execute 3 of these instructions in parallel on a single core.
            uint64_t a = hash,
                     b = hash,
                     c = hash;
            size_t steps = bytes/24;
            while (steps --> 0) {
                a = _mm_crc32_u64(a, unaligned_load<uint64_t>(data+ 0));
                b = _mm_crc32_u64(b, unaligned_load<uint64_t>(data+ 8));
                c = _mm_crc32_u64(c, unaligned_load<uint64_t>(data+16));
                data += 24;
            }
            bytes %= 24;
            hash = a^b^c;
        }

        SkASSERT(bytes < 24);
        if (bytes >= 16) {
            hash = _mm_crc32_u64(hash, unaligned_load<uint64_t>(data));
            bytes -= 8;
            data  += 8;
        }

        SkASSERT(bytes < 16);
        if (bytes & 8) {
            hash = _mm_crc32_u64(hash, unaligned_load<uint64_t>(data));
            data  += 8;
        }

        // The remainder of these _mm_crc32_u*() operate on a 32-bit register.
        // We don't lose anything here: only the bottom 32-bits were populated.
        auto hash32 = (uint32_t)hash;

        if (bytes & 4) {
            hash32 = _mm_crc32_u32(hash32, unaligned_load<uint32_t>(data));
            data += 4;
        }
        if (bytes & 2) {
            hash32 = _mm_crc32_u16(hash32, unaligned_load<uint16_t>(data));
            data += 2;
        }
        if (bytes & 1) {
            hash32 = _mm_crc32_u8(hash32, unaligned_load<uint8_t>(data));
        }
        return hash32;
    }

#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE42
    // 32-bit version of above, using _mm_crc32_u32() but not _mm_crc32_u64().
    static uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t hash) {
        auto data = (const uint8_t*)vdata;

        if (bytes >= 12) {
            // We'll create 3 independent hashes, each using _mm_crc32_u32()
            // to hash 4 bytes per step.  Both 3 and independent are important:
            // we can execute 3 of these instructions in parallel on a single core.
            uint32_t a = hash,
                     b = hash,
                     c = hash;
            size_t steps = bytes/12;
            while (steps --> 0) {
                a = _mm_crc32_u32(a, unaligned_load<uint32_t>(data+0));
                b = _mm_crc32_u32(b, unaligned_load<uint32_t>(data+4));
                c = _mm_crc32_u32(c, unaligned_load<uint32_t>(data+8));
                data += 12;
            }
            bytes %= 12;
            hash = a^b^c;
        }

        SkASSERT(bytes < 12);
        if (bytes >= 8) {
            hash = _mm_crc32_u32(hash, unaligned_load<uint32_t>(data));
            bytes -= 4;
            data  += 4;
        }

        SkASSERT(bytes < 8);
        if (bytes & 4) {
            hash = _mm_crc32_u32(hash, unaligned_load<uint32_t>(data));
            data += 4;
        }
        if (bytes & 2) {
            hash = _mm_crc32_u16(hash, unaligned_load<uint16_t>(data));
            data += 2;
        }
        if (bytes & 1) {
            hash = _mm_crc32_u8(hash, unaligned_load<uint8_t>(data));
        }
        return hash;
    }

#elif defined(SK_ARM_HAS_CRC32)
    static uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t hash) {
        auto data = (const uint8_t*)vdata;
        if (bytes >= 24) {
            uint32_t a = hash,
                     b = hash,
                     c = hash;
            size_t steps = bytes/24;
            while (steps --> 0) {
                a = __crc32d(a, unaligned_load<uint64_t>(data+ 0));
                b = __crc32d(b, unaligned_load<uint64_t>(data+ 8));
                c = __crc32d(c, unaligned_load<uint64_t>(data+16));
                data += 24;
            }
            bytes %= 24;
            hash = a^b^c;
        }

        SkASSERT(bytes < 24);
        if (bytes >= 16) {
            hash = __crc32d(hash, unaligned_load<uint64_t>(data));
            bytes -= 8;
            data  += 8;
        }

        SkASSERT(bytes < 16);
        if (bytes & 8) {
            hash = __crc32d(hash, unaligned_load<uint64_t>(data));
            data += 8;
        }
        if (bytes & 4) {
            hash = __crc32w(hash, unaligned_load<uint32_t>(data));
            data += 4;
        }
        if (bytes & 2) {
            hash = __crc32h(hash, unaligned_load<uint16_t>(data));
            data += 2;
        }
        if (bytes & 1) {
            hash = __crc32b(hash, unaligned_load<uint8_t>(data));
        }
        return hash;
    }

#else
    // This is Murmur3.
    static uint32_t hash_fn(const void* vdata, size_t bytes, uint32_t hash) {
        auto data = (const uint8_t*)vdata;

        size_t original_bytes = bytes;

        // Handle 4 bytes at a time while possible.
        while (bytes >= 4) {
            uint32_t k = unaligned_load<uint32_t>(data);
            k *= 0xcc9e2d51;
            k = (k << 15) | (k >> 17);
            k *= 0x1b873593;

            hash ^= k;
            hash = (hash << 13) | (hash >> 19);
            hash *= 5;
            hash += 0xe6546b64;

            bytes -= 4;
            data  += 4;
        }

        // Handle last 0-3 bytes.
        uint32_t k = 0;
        switch (bytes & 3) {
            case 3: k ^= data[2] << 16;
            case 2: k ^= data[1] <<  8;
            case 1: k ^= data[0] <<  0;
                    k *= 0xcc9e2d51;
                    k = (k << 15) | (k >> 17);
                    k *= 0x1b873593;
                    hash ^= k;
        }

        hash ^= original_bytes;
        return SkChecksum::Mix(hash);
    }
#endif

}  // namespace SK_OPTS_NS

#endif//SkChecksum_opts_DEFINED