aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkBlitRow_opts_arm_neon.cpp
blob: 14d59682e15d846f148a55f61263d3b272bdb755 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
/*
 * Copyright 2012 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBlitRow_opts_arm.h"

#include "SkBlitMask.h"
#include "SkBlitRow.h"
#include "SkColorPriv.h"
#include "SkDither.h"
#include "SkMathPriv.h"
#include "SkUtils.h"

#include "SkCachePreload_arm.h"

#include <arm_neon.h>

void S32A_D565_Opaque_neon(uint16_t* SK_RESTRICT dst,
                           const SkPMColor* SK_RESTRICT src, int count,
                           U8CPU alpha, int /*x*/, int /*y*/) {
    SkASSERT(255 == alpha);

    if (count >= 8) {
        uint16_t* SK_RESTRICT keep_dst;

        asm volatile (
                      "ands       ip, %[count], #7            \n\t"
                      "vmov.u8    d31, #1<<7                  \n\t"
                      "vld1.16    {q12}, [%[dst]]             \n\t"
                      "vld4.8     {d0-d3}, [%[src]]           \n\t"
                      // Thumb does not support the standard ARM conditional
                      // instructions but instead requires the 'it' instruction
                      // to signal conditional execution
                      "it eq                                  \n\t"
                      "moveq      ip, #8                      \n\t"
                      "mov        %[keep_dst], %[dst]         \n\t"

                      "add        %[src], %[src], ip, LSL#2   \n\t"
                      "add        %[dst], %[dst], ip, LSL#1   \n\t"
                      "subs       %[count], %[count], ip      \n\t"
                      "b          9f                          \n\t"
                      // LOOP
                      "2:                                         \n\t"

                      "vld1.16    {q12}, [%[dst]]!            \n\t"
                      "vld4.8     {d0-d3}, [%[src]]!          \n\t"
                      "vst1.16    {q10}, [%[keep_dst]]        \n\t"
                      "sub        %[keep_dst], %[dst], #8*2   \n\t"
                      "subs       %[count], %[count], #8      \n\t"
                      "9:                                         \n\t"
                      "pld        [%[dst],#32]                \n\t"
                      // expand 0565 q12 to 8888 {d4-d7}
                      "vmovn.u16  d4, q12                     \n\t"
                      "vshr.u16   q11, q12, #5                \n\t"
                      "vshr.u16   q10, q12, #6+5              \n\t"
                      "vmovn.u16  d5, q11                     \n\t"
                      "vmovn.u16  d6, q10                     \n\t"
                      "vshl.u8    d4, d4, #3                  \n\t"
                      "vshl.u8    d5, d5, #2                  \n\t"
                      "vshl.u8    d6, d6, #3                  \n\t"

                      "vmovl.u8   q14, d31                    \n\t"
                      "vmovl.u8   q13, d31                    \n\t"
                      "vmovl.u8   q12, d31                    \n\t"

                      // duplicate in 4/2/1 & 8pix vsns
                      "vmvn.8     d30, d3                     \n\t"
                      "vmlal.u8   q14, d30, d6                \n\t"
                      "vmlal.u8   q13, d30, d5                \n\t"
                      "vmlal.u8   q12, d30, d4                \n\t"
                      "vshr.u16   q8, q14, #5                 \n\t"
                      "vshr.u16   q9, q13, #6                 \n\t"
                      "vaddhn.u16 d6, q14, q8                 \n\t"
                      "vshr.u16   q8, q12, #5                 \n\t"
                      "vaddhn.u16 d5, q13, q9                 \n\t"
                      "vqadd.u8   d6, d6, d0                  \n\t"  // moved up
                      "vaddhn.u16 d4, q12, q8                 \n\t"
                      // intentionally don't calculate alpha
                      // result in d4-d6

                      "vqadd.u8   d5, d5, d1                  \n\t"
                      "vqadd.u8   d4, d4, d2                  \n\t"

                      // pack 8888 {d4-d6} to 0565 q10
                      "vshll.u8   q10, d6, #8                 \n\t"
                      "vshll.u8   q3, d5, #8                  \n\t"
                      "vshll.u8   q2, d4, #8                  \n\t"
                      "vsri.u16   q10, q3, #5                 \n\t"
                      "vsri.u16   q10, q2, #11                \n\t"

                      "bne        2b                          \n\t"

                      "1:                                         \n\t"
                      "vst1.16      {q10}, [%[keep_dst]]      \n\t"
                      : [count] "+r" (count)
                      : [dst] "r" (dst), [keep_dst] "r" (keep_dst), [src] "r" (src)
                      : "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7",
                      "d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29",
                      "d30","d31"
                      );
    }
    else
    {   // handle count < 8
        uint16_t* SK_RESTRICT keep_dst;

        asm volatile (
                      "vmov.u8    d31, #1<<7                  \n\t"
                      "mov        %[keep_dst], %[dst]         \n\t"

                      "tst        %[count], #4                \n\t"
                      "beq        14f                         \n\t"
                      "vld1.16    {d25}, [%[dst]]!            \n\t"
                      "vld1.32    {q1}, [%[src]]!             \n\t"

                      "14:                                        \n\t"
                      "tst        %[count], #2                \n\t"
                      "beq        12f                         \n\t"
                      "vld1.32    {d24[1]}, [%[dst]]!         \n\t"
                      "vld1.32    {d1}, [%[src]]!             \n\t"

                      "12:                                        \n\t"
                      "tst        %[count], #1                \n\t"
                      "beq        11f                         \n\t"
                      "vld1.16    {d24[1]}, [%[dst]]!         \n\t"
                      "vld1.32    {d0[1]}, [%[src]]!          \n\t"

                      "11:                                        \n\t"
                      // unzips achieve the same as a vld4 operation
                      "vuzpq.u16  q0, q1                      \n\t"
                      "vuzp.u8    d0, d1                      \n\t"
                      "vuzp.u8    d2, d3                      \n\t"
                      // expand 0565 q12 to 8888 {d4-d7}
                      "vmovn.u16  d4, q12                     \n\t"
                      "vshr.u16   q11, q12, #5                \n\t"
                      "vshr.u16   q10, q12, #6+5              \n\t"
                      "vmovn.u16  d5, q11                     \n\t"
                      "vmovn.u16  d6, q10                     \n\t"
                      "vshl.u8    d4, d4, #3                  \n\t"
                      "vshl.u8    d5, d5, #2                  \n\t"
                      "vshl.u8    d6, d6, #3                  \n\t"

                      "vmovl.u8   q14, d31                    \n\t"
                      "vmovl.u8   q13, d31                    \n\t"
                      "vmovl.u8   q12, d31                    \n\t"

                      // duplicate in 4/2/1 & 8pix vsns
                      "vmvn.8     d30, d3                     \n\t"
                      "vmlal.u8   q14, d30, d6                \n\t"
                      "vmlal.u8   q13, d30, d5                \n\t"
                      "vmlal.u8   q12, d30, d4                \n\t"
                      "vshr.u16   q8, q14, #5                 \n\t"
                      "vshr.u16   q9, q13, #6                 \n\t"
                      "vaddhn.u16 d6, q14, q8                 \n\t"
                      "vshr.u16   q8, q12, #5                 \n\t"
                      "vaddhn.u16 d5, q13, q9                 \n\t"
                      "vqadd.u8   d6, d6, d0                  \n\t"  // moved up
                      "vaddhn.u16 d4, q12, q8                 \n\t"
                      // intentionally don't calculate alpha
                      // result in d4-d6

                      "vqadd.u8   d5, d5, d1                  \n\t"
                      "vqadd.u8   d4, d4, d2                  \n\t"

                      // pack 8888 {d4-d6} to 0565 q10
                      "vshll.u8   q10, d6, #8                 \n\t"
                      "vshll.u8   q3, d5, #8                  \n\t"
                      "vshll.u8   q2, d4, #8                  \n\t"
                      "vsri.u16   q10, q3, #5                 \n\t"
                      "vsri.u16   q10, q2, #11                \n\t"

                      // store
                      "tst        %[count], #4                \n\t"
                      "beq        24f                         \n\t"
                      "vst1.16    {d21}, [%[keep_dst]]!       \n\t"

                      "24:                                        \n\t"
                      "tst        %[count], #2                \n\t"
                      "beq        22f                         \n\t"
                      "vst1.32    {d20[1]}, [%[keep_dst]]!    \n\t"

                      "22:                                        \n\t"
                      "tst        %[count], #1                \n\t"
                      "beq        21f                         \n\t"
                      "vst1.16    {d20[1]}, [%[keep_dst]]!    \n\t"

                      "21:                                        \n\t"
                      : [count] "+r" (count)
                      : [dst] "r" (dst), [keep_dst] "r" (keep_dst), [src] "r" (src)
                      : "ip", "cc", "memory", "d0","d1","d2","d3","d4","d5","d6","d7",
                      "d16","d17","d18","d19","d20","d21","d22","d23","d24","d25","d26","d27","d28","d29",
                      "d30","d31"
                      );
    }
}

void S32A_D565_Blend_neon(uint16_t* SK_RESTRICT dst,
                          const SkPMColor* SK_RESTRICT src, int count,
                          U8CPU alpha, int /*x*/, int /*y*/) {

    U8CPU alpha_for_asm = alpha;

    asm volatile (
    /* This code implements a Neon version of S32A_D565_Blend. The output differs from
     * the original in two respects:
     *  1. The results have a few mismatches compared to the original code. These mismatches
     *     never exceed 1. It's possible to improve accuracy vs. a floating point
     *     implementation by introducing rounding right shifts (vrshr) for the final stage.
     *     Rounding is not present in the code below, because although results would be closer
     *     to a floating point implementation, the number of mismatches compared to the
     *     original code would be far greater.
     *  2. On certain inputs, the original code can overflow, causing colour channels to
     *     mix. Although the Neon code can also overflow, it doesn't allow one colour channel
     *     to affect another.
     */

#if 1
        /* reflects SkAlpha255To256()'s change from a+a>>7 to a+1 */
                  "add        %[alpha], %[alpha], #1         \n\t"   // adjust range of alpha 0-256
#else
                  "add        %[alpha], %[alpha], %[alpha], lsr #7    \n\t"   // adjust range of alpha 0-256
#endif
                  "vmov.u16   q3, #255                        \n\t"   // set up constant
                  "movs       r4, %[count], lsr #3            \n\t"   // calc. count>>3
                  "vmov.u16   d2[0], %[alpha]                 \n\t"   // move alpha to Neon
                  "beq        2f                              \n\t"   // if count8 == 0, exit
                  "vmov.u16   q15, #0x1f                      \n\t"   // set up blue mask

                  "1:                                             \n\t"
                  "vld1.u16   {d0, d1}, [%[dst]]              \n\t"   // load eight dst RGB565 pixels
                  "subs       r4, r4, #1                      \n\t"   // decrement loop counter
                  "vld4.u8    {d24, d25, d26, d27}, [%[src]]! \n\t"   // load eight src ABGR32 pixels
                  //  and deinterleave

                  "vshl.u16   q9, q0, #5                      \n\t"   // shift green to top of lanes
                  "vand       q10, q0, q15                    \n\t"   // extract blue
                  "vshr.u16   q8, q0, #11                     \n\t"   // extract red
                  "vshr.u16   q9, q9, #10                     \n\t"   // extract green
                  // dstrgb = {q8, q9, q10}

                  "vshr.u8    d24, d24, #3                    \n\t"   // shift red to 565 range
                  "vshr.u8    d25, d25, #2                    \n\t"   // shift green to 565 range
                  "vshr.u8    d26, d26, #3                    \n\t"   // shift blue to 565 range

                  "vmovl.u8   q11, d24                        \n\t"   // widen red to 16 bits
                  "vmovl.u8   q12, d25                        \n\t"   // widen green to 16 bits
                  "vmovl.u8   q14, d27                        \n\t"   // widen alpha to 16 bits
                  "vmovl.u8   q13, d26                        \n\t"   // widen blue to 16 bits
                  // srcrgba = {q11, q12, q13, q14}

                  "vmul.u16   q2, q14, d2[0]                  \n\t"   // sa * src_scale
                  "vmul.u16   q11, q11, d2[0]                 \n\t"   // red result = src_red * src_scale
                  "vmul.u16   q12, q12, d2[0]                 \n\t"   // grn result = src_grn * src_scale
                  "vmul.u16   q13, q13, d2[0]                 \n\t"   // blu result = src_blu * src_scale

                  "vshr.u16   q2, q2, #8                      \n\t"   // sa * src_scale >> 8
                  "vsub.u16   q2, q3, q2                      \n\t"   // 255 - (sa * src_scale >> 8)
                  // dst_scale = q2

                  "vmla.u16   q11, q8, q2                     \n\t"   // red result += dst_red * dst_scale
                  "vmla.u16   q12, q9, q2                     \n\t"   // grn result += dst_grn * dst_scale
                  "vmla.u16   q13, q10, q2                    \n\t"   // blu result += dst_blu * dst_scale

#if 1
    // trying for a better match with SkDiv255Round(a)
    // C alg is:  a+=128; (a+a>>8)>>8
    // we'll use just a rounding shift [q2 is available for scratch]
                  "vrshr.u16   q11, q11, #8                    \n\t"   // shift down red
                  "vrshr.u16   q12, q12, #8                    \n\t"   // shift down green
                  "vrshr.u16   q13, q13, #8                    \n\t"   // shift down blue
#else
    // arm's original "truncating divide by 256"
                  "vshr.u16   q11, q11, #8                    \n\t"   // shift down red
                  "vshr.u16   q12, q12, #8                    \n\t"   // shift down green
                  "vshr.u16   q13, q13, #8                    \n\t"   // shift down blue
#endif

                  "vsli.u16   q13, q12, #5                    \n\t"   // insert green into blue
                  "vsli.u16   q13, q11, #11                   \n\t"   // insert red into green/blue
                  "vst1.16    {d26, d27}, [%[dst]]!           \n\t"   // write pixel back to dst, update ptr

                  "bne        1b                              \n\t"   // if counter != 0, loop
                  "2:                                             \n\t"   // exit

                  : [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count), [alpha] "+r" (alpha_for_asm)
                  :
                  : "cc", "memory", "r4", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"
                  );

    count &= 7;
    if (count > 0) {
        do {
            SkPMColor sc = *src++;
            if (sc) {
                uint16_t dc = *dst;
                unsigned dst_scale = 255 - SkMulDiv255Round(SkGetPackedA32(sc), alpha);
                unsigned dr = SkMulS16(SkPacked32ToR16(sc), alpha) + SkMulS16(SkGetPackedR16(dc), dst_scale);
                unsigned dg = SkMulS16(SkPacked32ToG16(sc), alpha) + SkMulS16(SkGetPackedG16(dc), dst_scale);
                unsigned db = SkMulS16(SkPacked32ToB16(sc), alpha) + SkMulS16(SkGetPackedB16(dc), dst_scale);
                *dst = SkPackRGB16(SkDiv255Round(dr), SkDiv255Round(dg), SkDiv255Round(db));
            }
            dst += 1;
        } while (--count != 0);
    }
}

/* dither matrix for Neon, derived from gDitherMatrix_3Bit_16.
 * each dither value is spaced out into byte lanes, and repeated
 * to allow an 8-byte load from offsets 0, 1, 2 or 3 from the
 * start of each row.
 */
static const uint8_t gDitherMatrix_Neon[48] = {
    0, 4, 1, 5, 0, 4, 1, 5, 0, 4, 1, 5,
    6, 2, 7, 3, 6, 2, 7, 3, 6, 2, 7, 3,
    1, 5, 0, 4, 1, 5, 0, 4, 1, 5, 0, 4,
    7, 3, 6, 2, 7, 3, 6, 2, 7, 3, 6, 2,

};

void S32_D565_Blend_Dither_neon(uint16_t *dst, const SkPMColor *src,
                                int count, U8CPU alpha, int x, int y)
{
    /* select row and offset for dither array */
    const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)];

    /* rescale alpha to range 0 - 256 */
    int scale = SkAlpha255To256(alpha);

    asm volatile (
                  "vld1.8         {d31}, [%[dstart]]              \n\t"   // load dither values
                  "vshr.u8        d30, d31, #1                    \n\t"   // calc. green dither values
                  "vdup.16        d6, %[scale]                    \n\t"   // duplicate scale into neon reg
                  "vmov.i8        d29, #0x3f                      \n\t"   // set up green mask
                  "vmov.i8        d28, #0x1f                      \n\t"   // set up blue mask
                  "1:                                                 \n\t"
                  "vld4.8         {d0, d1, d2, d3}, [%[src]]!     \n\t"   // load 8 pixels and split into argb
                  "vshr.u8        d22, d0, #5                     \n\t"   // calc. red >> 5
                  "vshr.u8        d23, d1, #6                     \n\t"   // calc. green >> 6
                  "vshr.u8        d24, d2, #5                     \n\t"   // calc. blue >> 5
                  "vaddl.u8       q8, d0, d31                     \n\t"   // add in dither to red and widen
                  "vaddl.u8       q9, d1, d30                     \n\t"   // add in dither to green and widen
                  "vaddl.u8       q10, d2, d31                    \n\t"   // add in dither to blue and widen
                  "vsubw.u8       q8, q8, d22                     \n\t"   // sub shifted red from result
                  "vsubw.u8       q9, q9, d23                     \n\t"   // sub shifted green from result
                  "vsubw.u8       q10, q10, d24                   \n\t"   // sub shifted blue from result
                  "vshrn.i16      d22, q8, #3                     \n\t"   // shift right and narrow to 5 bits
                  "vshrn.i16      d23, q9, #2                     \n\t"   // shift right and narrow to 6 bits
                  "vshrn.i16      d24, q10, #3                    \n\t"   // shift right and narrow to 5 bits
                  // load 8 pixels from dst, extract rgb
                  "vld1.16        {d0, d1}, [%[dst]]              \n\t"   // load 8 pixels
                  "vshrn.i16      d17, q0, #5                     \n\t"   // shift green down to bottom 6 bits
                  "vmovn.i16      d18, q0                         \n\t"   // narrow to get blue as bytes
                  "vshr.u16       q0, q0, #11                     \n\t"   // shift down to extract red
                  "vand           d17, d17, d29                   \n\t"   // and green with green mask
                  "vand           d18, d18, d28                   \n\t"   // and blue with blue mask
                  "vmovn.i16      d16, q0                         \n\t"   // narrow to get red as bytes
                  // src = {d22 (r), d23 (g), d24 (b)}
                  // dst = {d16 (r), d17 (g), d18 (b)}
                  // subtract dst from src and widen
                  "vsubl.s8       q0, d22, d16                    \n\t"   // subtract red src from dst
                  "vsubl.s8       q1, d23, d17                    \n\t"   // subtract green src from dst
                  "vsubl.s8       q2, d24, d18                    \n\t"   // subtract blue src from dst
                  // multiply diffs by scale and shift
                  "vmul.i16       q0, q0, d6[0]                   \n\t"   // multiply red by scale
                  "vmul.i16       q1, q1, d6[0]                   \n\t"   // multiply blue by scale
                  "vmul.i16       q2, q2, d6[0]                   \n\t"   // multiply green by scale
                  "subs           %[count], %[count], #8          \n\t"   // decrement loop counter
                  "vshrn.i16      d0, q0, #8                      \n\t"   // shift down red by 8 and narrow
                  "vshrn.i16      d2, q1, #8                      \n\t"   // shift down green by 8 and narrow
                  "vshrn.i16      d4, q2, #8                      \n\t"   // shift down blue by 8 and narrow
                  // add dst to result
                  "vaddl.s8       q0, d0, d16                     \n\t"   // add dst to red
                  "vaddl.s8       q1, d2, d17                     \n\t"   // add dst to green
                  "vaddl.s8       q2, d4, d18                     \n\t"   // add dst to blue
                  // put result into 565 format
                  "vsli.i16       q2, q1, #5                      \n\t"   // shift up green and insert into blue
                  "vsli.i16       q2, q0, #11                     \n\t"   // shift up red and insert into blue
                  "vst1.16        {d4, d5}, [%[dst]]!             \n\t"   // store result
                  "bgt            1b                              \n\t"   // loop if count > 0
                  : [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count)
                  : [dstart] "r" (dstart), [scale] "r" (scale)
                  : "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", "d24", "d28", "d29", "d30", "d31"
                  );

    DITHER_565_SCAN(y);

    while((count & 7) > 0)
    {
        SkPMColor c = *src++;

        int dither = DITHER_VALUE(x);
        int sr = SkGetPackedR32(c);
        int sg = SkGetPackedG32(c);
        int sb = SkGetPackedB32(c);
        sr = SkDITHER_R32To565(sr, dither);
        sg = SkDITHER_G32To565(sg, dither);
        sb = SkDITHER_B32To565(sb, dither);

        uint16_t d = *dst;
        *dst++ = SkPackRGB16(SkAlphaBlend(sr, SkGetPackedR16(d), scale),
                             SkAlphaBlend(sg, SkGetPackedG16(d), scale),
                             SkAlphaBlend(sb, SkGetPackedB16(d), scale));
        DITHER_INC_X(x);
        count--;
    }
}

void S32A_Opaque_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
                                const SkPMColor* SK_RESTRICT src,
                                int count, U8CPU alpha) {

    SkASSERT(255 == alpha);
    if (count > 0) {


    uint8x8_t alpha_mask;

    static const uint8_t alpha_mask_setup[] = {3,3,3,3,7,7,7,7};
    alpha_mask = vld1_u8(alpha_mask_setup);

    /* do the NEON unrolled code */
#define    UNROLL    4
    while (count >= UNROLL) {
        uint8x8_t src_raw, dst_raw, dst_final;
        uint8x8_t src_raw_2, dst_raw_2, dst_final_2;

        /* get the source */
        src_raw = vreinterpret_u8_u32(vld1_u32(src));
#if    UNROLL > 2
        src_raw_2 = vreinterpret_u8_u32(vld1_u32(src+2));
#endif

        /* get and hold the dst too */
        dst_raw = vreinterpret_u8_u32(vld1_u32(dst));
#if    UNROLL > 2
        dst_raw_2 = vreinterpret_u8_u32(vld1_u32(dst+2));
#endif

    /* 1st and 2nd bits of the unrolling */
    {
        uint8x8_t dst_cooked;
        uint16x8_t dst_wide;
        uint8x8_t alpha_narrow;
        uint16x8_t alpha_wide;

        /* get the alphas spread out properly */
        alpha_narrow = vtbl1_u8(src_raw, alpha_mask);
#if 1
        /* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
        /* we collapsed (255-a)+1 ... */
        alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
#else
        alpha_wide = vsubw_u8(vdupq_n_u16(255), alpha_narrow);
        alpha_wide = vaddq_u16(alpha_wide, vshrq_n_u16(alpha_wide,7));
#endif

        /* spread the dest */
        dst_wide = vmovl_u8(dst_raw);

        /* alpha mul the dest */
        dst_wide = vmulq_u16 (dst_wide, alpha_wide);
        dst_cooked = vshrn_n_u16(dst_wide, 8);

        /* sum -- ignoring any byte lane overflows */
        dst_final = vadd_u8(src_raw, dst_cooked);
    }

#if    UNROLL > 2
    /* the 3rd and 4th bits of our unrolling */
    {
        uint8x8_t dst_cooked;
        uint16x8_t dst_wide;
        uint8x8_t alpha_narrow;
        uint16x8_t alpha_wide;

        alpha_narrow = vtbl1_u8(src_raw_2, alpha_mask);
#if 1
        /* reflect SkAlpha255To256() semantics a+1 vs a+a>>7 */
        /* we collapsed (255-a)+1 ... */
        alpha_wide = vsubw_u8(vdupq_n_u16(256), alpha_narrow);
#else
        alpha_wide = vsubw_u8(vdupq_n_u16(255), alpha_narrow);
        alpha_wide = vaddq_u16(alpha_wide, vshrq_n_u16(alpha_wide,7));
#endif

        /* spread the dest */
        dst_wide = vmovl_u8(dst_raw_2);

        /* alpha mul the dest */
        dst_wide = vmulq_u16 (dst_wide, alpha_wide);
        dst_cooked = vshrn_n_u16(dst_wide, 8);

        /* sum -- ignoring any byte lane overflows */
        dst_final_2 = vadd_u8(src_raw_2, dst_cooked);
    }
#endif

        vst1_u32(dst, vreinterpret_u32_u8(dst_final));
#if    UNROLL > 2
        vst1_u32(dst+2, vreinterpret_u32_u8(dst_final_2));
#endif

        src += UNROLL;
        dst += UNROLL;
        count -= UNROLL;
    }
#undef    UNROLL

    /* do any residual iterations */
        while (--count >= 0) {
            *dst = SkPMSrcOver(*src, *dst);
            src += 1;
            dst += 1;
        }
    }
}


/* Neon version of S32_Blend_BlitRow32()
 * portable version is in src/core/SkBlitRow_D32.cpp
 */
void S32_Blend_BlitRow32_neon(SkPMColor* SK_RESTRICT dst,
                              const SkPMColor* SK_RESTRICT src,
                              int count, U8CPU alpha) {
    SkASSERT(alpha <= 255);
    if (count > 0) {
        uint16_t src_scale = SkAlpha255To256(alpha);
        uint16_t dst_scale = 256 - src_scale;

    /* run them N at a time through the NEON unit */
    /* note that each 1 is 4 bytes, each treated exactly the same,
     * so we can work under that guise. We *do* know that the src&dst
     * will be 32-bit aligned quantities, so we can specify that on
     * the load/store ops and do a neon 'reinterpret' to get us to
     * byte-sized (pun intended) pieces that we widen/multiply/shift
     * we're limited at 128 bits in the wide ops, which is 8x16bits
     * or a pair of 32 bit src/dsts.
     */
    /* we *could* manually unroll this loop so that we load 128 bits
     * (as a pair of 64s) from each of src and dst, processing them
     * in pieces. This might give us a little better management of
     * the memory latency, but my initial attempts here did not
     * produce an instruction stream that looked all that nice.
     */
#define    UNROLL    2
    while (count >= UNROLL) {
        uint8x8_t  src_raw, dst_raw, dst_final;
        uint16x8_t  src_wide, dst_wide;

        /* get 64 bits of src, widen it, multiply by src_scale */
        src_raw = vreinterpret_u8_u32(vld1_u32(src));
        src_wide = vmovl_u8(src_raw);
        /* gcc hoists vdupq_n_u16(), better than using vmulq_n_u16() */
        src_wide = vmulq_u16 (src_wide, vdupq_n_u16(src_scale));

        /* ditto with dst */
        dst_raw = vreinterpret_u8_u32(vld1_u32(dst));
        dst_wide = vmovl_u8(dst_raw);

        /* combine add with dst multiply into mul-accumulate */
        dst_wide = vmlaq_u16(src_wide, dst_wide, vdupq_n_u16(dst_scale));

        dst_final = vshrn_n_u16(dst_wide, 8);
        vst1_u32(dst, vreinterpret_u32_u8(dst_final));

        src += UNROLL;
        dst += UNROLL;
        count -= UNROLL;
    }
    /* RBE: well, i don't like how gcc manages src/dst across the above
     * loop it's constantly calculating src+bias, dst+bias and it only
     * adjusts the real ones when we leave the loop. Not sure why
     * it's "hoisting down" (hoisting implies above in my lexicon ;))
     * the adjustments to src/dst/count, but it does...
     * (might be SSA-style internal logic...
     */

#if    UNROLL == 2
    if (count == 1) {
            *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale);
    }
#else
    if (count > 0) {
            do {
                *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale);
                src += 1;
                dst += 1;
            } while (--count > 0);
    }
#endif

#undef    UNROLL
    }
}

///////////////////////////////////////////////////////////////////////////////

#undef    DEBUG_OPAQUE_DITHER

#if    defined(DEBUG_OPAQUE_DITHER)
static void showme8(char *str, void *p, int len)
{
    static char buf[256];
    char tbuf[32];
    int i;
    char *pc = (char*) p;
    sprintf(buf,"%8s:", str);
    for(i=0;i<len;i++) {
        sprintf(tbuf, "   %02x", pc[i]);
        strcat(buf, tbuf);
    }
    SkDebugf("%s\n", buf);
}
static void showme16(char *str, void *p, int len)
{
    static char buf[256];
    char tbuf[32];
    int i;
    uint16_t *pc = (uint16_t*) p;
    sprintf(buf,"%8s:", str);
    len = (len / sizeof(uint16_t));    /* passed as bytes */
    for(i=0;i<len;i++) {
        sprintf(tbuf, " %04x", pc[i]);
        strcat(buf, tbuf);
    }
    SkDebugf("%s\n", buf);
}
#endif

void S32A_D565_Opaque_Dither_neon (uint16_t * SK_RESTRICT dst,
                                   const SkPMColor* SK_RESTRICT src,
                                   int count, U8CPU alpha, int x, int y) {
    SkASSERT(255 == alpha);

#define    UNROLL    8

    if (count >= UNROLL) {
    uint8x8_t dbase;

#if    defined(DEBUG_OPAQUE_DITHER)
    uint16_t tmpbuf[UNROLL];
    int td[UNROLL];
    int tdv[UNROLL];
    int ta[UNROLL];
    int tap[UNROLL];
    uint16_t in_dst[UNROLL];
    int offset = 0;
    int noisy = 0;
#endif

    const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)];
    dbase = vld1_u8(dstart);

        do {
        uint8x8_t sr, sg, sb, sa, d;
        uint16x8_t dst8, scale8, alpha8;
        uint16x8_t dst_r, dst_g, dst_b;

#if    defined(DEBUG_OPAQUE_DITHER)
    /* calculate 8 elements worth into a temp buffer */
    {
      int my_y = y;
      int my_x = x;
      SkPMColor* my_src = (SkPMColor*)src;
      uint16_t* my_dst = dst;
      int i;

          DITHER_565_SCAN(my_y);
          for(i=0;i<UNROLL;i++) {
            SkPMColor c = *my_src++;
            SkPMColorAssert(c);
            if (c) {
                unsigned a = SkGetPackedA32(c);

                int d = SkAlphaMul(DITHER_VALUE(my_x), SkAlpha255To256(a));
        tdv[i] = DITHER_VALUE(my_x);
        ta[i] = a;
        tap[i] = SkAlpha255To256(a);
        td[i] = d;

                unsigned sr = SkGetPackedR32(c);
                unsigned sg = SkGetPackedG32(c);
                unsigned sb = SkGetPackedB32(c);
                sr = SkDITHER_R32_FOR_565(sr, d);
                sg = SkDITHER_G32_FOR_565(sg, d);
                sb = SkDITHER_B32_FOR_565(sb, d);

                uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2);
                uint32_t dst_expanded = SkExpand_rgb_16(*my_dst);
                dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3);
                // now src and dst expanded are in g:11 r:10 x:1 b:10
                tmpbuf[i] = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5);
        td[i] = d;

            } else {
        tmpbuf[i] = *my_dst;
        ta[i] = tdv[i] = td[i] = 0xbeef;
        }
        in_dst[i] = *my_dst;
            my_dst += 1;
            DITHER_INC_X(my_x);
          }
    }
#endif

        /* source is in ABGR */
        {
        register uint8x8_t d0 asm("d0");
        register uint8x8_t d1 asm("d1");
        register uint8x8_t d2 asm("d2");
        register uint8x8_t d3 asm("d3");

        asm ("vld4.8    {d0-d3},[%4]  /* r=%P0 g=%P1 b=%P2 a=%P3 */"
            : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3)
            : "r" (src)
                    );
            sr = d0; sg = d1; sb = d2; sa = d3;
        }

        /* calculate 'd', which will be 0..7 */
        /* dbase[] is 0..7; alpha is 0..256; 16 bits suffice */
#if defined(SK_BUILD_FOR_ANDROID)
        /* SkAlpha255To256() semantic a+1 vs a+a>>7 */
        alpha8 = vaddw_u8(vmovl_u8(sa), vdup_n_u8(1));
#else
        alpha8 = vaddw_u8(vmovl_u8(sa), vshr_n_u8(sa, 7));
#endif
        alpha8 = vmulq_u16(alpha8, vmovl_u8(dbase));
        d = vshrn_n_u16(alpha8, 8);    /* narrowing too */

        /* sr = sr - (sr>>5) + d */
        /* watching for 8-bit overflow.  d is 0..7; risky range of
         * sr is >248; and then (sr>>5) is 7 so it offsets 'd';
         * safe  as long as we do ((sr-sr>>5) + d) */
        sr = vsub_u8(sr, vshr_n_u8(sr, 5));
        sr = vadd_u8(sr, d);

        /* sb = sb - (sb>>5) + d */
        sb = vsub_u8(sb, vshr_n_u8(sb, 5));
        sb = vadd_u8(sb, d);

        /* sg = sg - (sg>>6) + d>>1; similar logic for overflows */
        sg = vsub_u8(sg, vshr_n_u8(sg, 6));
        sg = vadd_u8(sg, vshr_n_u8(d,1));

        /* need to pick up 8 dst's -- at 16 bits each, 128 bits */
        dst8 = vld1q_u16(dst);
        dst_b = vandq_u16(dst8, vdupq_n_u16(0x001F));
        dst_g = vandq_u16(vshrq_n_u16(dst8,5), vdupq_n_u16(0x003F));
        dst_r = vshrq_n_u16(dst8,11);    /* clearing hi bits */

        /* blend */
#if 1
        /* SkAlpha255To256() semantic a+1 vs a+a>>7 */
        /* originally 255-sa + 1 */
        scale8 = vsubw_u8(vdupq_n_u16(256), sa);
#else
        scale8 = vsubw_u8(vdupq_n_u16(255), sa);
        scale8 = vaddq_u16(scale8, vshrq_n_u16(scale8, 7));
#endif

#if 1
        /* combine the addq and mul, save 3 insns */
        scale8 = vshrq_n_u16(scale8, 3);
        dst_b = vmlaq_u16(vshll_n_u8(sb,2), dst_b, scale8);
        dst_g = vmlaq_u16(vshll_n_u8(sg,3), dst_g, scale8);
        dst_r = vmlaq_u16(vshll_n_u8(sr,2), dst_r, scale8);
#else
        /* known correct, but +3 insns over above */
        scale8 = vshrq_n_u16(scale8, 3);
        dst_b = vmulq_u16(dst_b, scale8);
        dst_g = vmulq_u16(dst_g, scale8);
        dst_r = vmulq_u16(dst_r, scale8);

        /* combine */
        /* NB: vshll widens, need to preserve those bits */
        dst_b = vaddq_u16(dst_b, vshll_n_u8(sb,2));
        dst_g = vaddq_u16(dst_g, vshll_n_u8(sg,3));
        dst_r = vaddq_u16(dst_r, vshll_n_u8(sr,2));
#endif

        /* repack to store */
        dst8 = vandq_u16(vshrq_n_u16(dst_b, 5), vdupq_n_u16(0x001F));
        dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dst_g, 5), 5);
        dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dst_r,5), 11);

        vst1q_u16(dst, dst8);

#if    defined(DEBUG_OPAQUE_DITHER)
        /* verify my 8 elements match the temp buffer */
    {
       int i, bad=0;
       static int invocation;

       for (i=0;i<UNROLL;i++)
        if (tmpbuf[i] != dst[i]) bad=1;
       if (bad) {
        SkDebugf("BAD S32A_D565_Opaque_Dither_neon(); invocation %d offset %d\n",
            invocation, offset);
        SkDebugf("  alpha 0x%x\n", alpha);
        for (i=0;i<UNROLL;i++)
            SkDebugf("%2d: %s %04x w %04x id %04x s %08x d %04x %04x %04x %04x\n",
            i, ((tmpbuf[i] != dst[i])?"BAD":"got"),
            dst[i], tmpbuf[i], in_dst[i], src[i], td[i], tdv[i], tap[i], ta[i]);

        showme16("alpha8", &alpha8, sizeof(alpha8));
        showme16("scale8", &scale8, sizeof(scale8));
        showme8("d", &d, sizeof(d));
        showme16("dst8", &dst8, sizeof(dst8));
        showme16("dst_b", &dst_b, sizeof(dst_b));
        showme16("dst_g", &dst_g, sizeof(dst_g));
        showme16("dst_r", &dst_r, sizeof(dst_r));
        showme8("sb", &sb, sizeof(sb));
        showme8("sg", &sg, sizeof(sg));
        showme8("sr", &sr, sizeof(sr));

        /* cop out */
        return;
       }
       offset += UNROLL;
       invocation++;
    }
#endif

            dst += UNROLL;
        src += UNROLL;
        count -= UNROLL;
        /* skip x += UNROLL, since it's unchanged mod-4 */
        } while (count >= UNROLL);
    }
#undef    UNROLL

    /* residuals */
    if (count > 0) {
        DITHER_565_SCAN(y);
        do {
            SkPMColor c = *src++;
            SkPMColorAssert(c);
            if (c) {
                unsigned a = SkGetPackedA32(c);

                // dither and alpha are just temporary variables to work-around
                // an ICE in debug.
                unsigned dither = DITHER_VALUE(x);
                unsigned alpha = SkAlpha255To256(a);
                int d = SkAlphaMul(dither, alpha);

                unsigned sr = SkGetPackedR32(c);
                unsigned sg = SkGetPackedG32(c);
                unsigned sb = SkGetPackedB32(c);
                sr = SkDITHER_R32_FOR_565(sr, d);
                sg = SkDITHER_G32_FOR_565(sg, d);
                sb = SkDITHER_B32_FOR_565(sb, d);

                uint32_t src_expanded = (sg << 24) | (sr << 13) | (sb << 2);
                uint32_t dst_expanded = SkExpand_rgb_16(*dst);
                dst_expanded = dst_expanded * (SkAlpha255To256(255 - a) >> 3);
                // now src and dst expanded are in g:11 r:10 x:1 b:10
                *dst = SkCompact_rgb_16((src_expanded + dst_expanded) >> 5);
            }
            dst += 1;
            DITHER_INC_X(x);
        } while (--count != 0);
    }
}

///////////////////////////////////////////////////////////////////////////////

/* 2009/10/27: RBE says "a work in progress"; debugging says ok;
 * speedup untested, but ARM version is 26 insns/iteration and
 * this NEON version is 21 insns/iteration-of-8 (2.62insns/element)
 * which is 10x the native version; that's pure instruction counts,
 * not accounting for any instruction or memory latencies.
 */

#undef    DEBUG_S32_OPAQUE_DITHER

void S32_D565_Opaque_Dither_neon(uint16_t* SK_RESTRICT dst,
                                 const SkPMColor* SK_RESTRICT src,
                                 int count, U8CPU alpha, int x, int y) {
    SkASSERT(255 == alpha);

#define    UNROLL    8
    if (count >= UNROLL) {
    uint8x8_t d;
    const uint8_t *dstart = &gDitherMatrix_Neon[(y&3)*12 + (x&3)];
    d = vld1_u8(dstart);

    while (count >= UNROLL) {
        uint8x8_t sr, sg, sb, sa;
        uint16x8_t dr, dg, db, da;
        uint16x8_t dst8;

        /* source is in ABGR ordering (R == lsb) */
        {
        register uint8x8_t d0 asm("d0");
        register uint8x8_t d1 asm("d1");
        register uint8x8_t d2 asm("d2");
        register uint8x8_t d3 asm("d3");

        asm ("vld4.8    {d0-d3},[%4]  /* r=%P0 g=%P1 b=%P2 a=%P3 */"
            : "=w" (d0), "=w" (d1), "=w" (d2), "=w" (d3)
            : "r" (src)
                    );
            sr = d0; sg = d1; sb = d2; sa = d3;
        }
        /* XXX: if we want to prefetch, hide it in the above asm()
         * using the gcc __builtin_prefetch(), the prefetch will
         * fall to the bottom of the loop -- it won't stick up
         * at the top of the loop, just after the vld4.
         */

        /* sr = sr - (sr>>5) + d */
        sr = vsub_u8(sr, vshr_n_u8(sr, 5));
        dr = vaddl_u8(sr, d);

        /* sb = sb - (sb>>5) + d */
        sb = vsub_u8(sb, vshr_n_u8(sb, 5));
        db = vaddl_u8(sb, d);

        /* sg = sg - (sg>>6) + d>>1; similar logic for overflows */
        sg = vsub_u8(sg, vshr_n_u8(sg, 6));
        dg = vaddl_u8(sg, vshr_n_u8(d,1));
        /* XXX: check that the "d>>1" here is hoisted */

        /* pack high bits of each into 565 format  (rgb, b is lsb) */
        dst8 = vshrq_n_u16(db, 3);
        dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dg, 2), 5);
        dst8 = vsliq_n_u16(dst8, vshrq_n_u16(dr,3), 11);

        /* store it */
        vst1q_u16(dst, dst8);

#if    defined(DEBUG_S32_OPAQUE_DITHER)
        /* always good to know if we generated good results */
        {
        int i, myx = x, myy = y;
        DITHER_565_SCAN(myy);
        for (i=0;i<UNROLL;i++) {
            SkPMColor c = src[i];
            unsigned dither = DITHER_VALUE(myx);
            uint16_t val = SkDitherRGB32To565(c, dither);
            if (val != dst[i]) {
            SkDebugf("RBE: src %08x dither %02x, want %04x got %04x dbas[i] %02x\n",
                c, dither, val, dst[i], dstart[i]);
            }
            DITHER_INC_X(myx);
        }
        }
#endif

        dst += UNROLL;
        src += UNROLL;
        count -= UNROLL;
        x += UNROLL;        /* probably superfluous */
    }
    }
#undef    UNROLL

    /* residuals */
    if (count > 0) {
        DITHER_565_SCAN(y);
        do {
            SkPMColor c = *src++;
            SkPMColorAssert(c);
            SkASSERT(SkGetPackedA32(c) == 255);

            unsigned dither = DITHER_VALUE(x);
            *dst++ = SkDitherRGB32To565(c, dither);
            DITHER_INC_X(x);
        } while (--count != 0);
    }
}

void Color32_arm_neon(SkPMColor* dst, const SkPMColor* src, int count,
                      SkPMColor color) {
    if (count <= 0) {
        return;
    }

    if (0 == color) {
        if (src != dst) {
            memcpy(dst, src, count * sizeof(SkPMColor));
        }
        return;
    }

    unsigned colorA = SkGetPackedA32(color);
    if (255 == colorA) {
        sk_memset32(dst, color, count);
    } else {
        unsigned scale = 256 - SkAlpha255To256(colorA);

        if (count >= 8) {
            // at the end of this assembly, count will have been decremented
            // to a negative value. That is, if count mod 8 = x, it will be
            // -8 +x coming out.
            asm volatile (
                PLD128(src, 0)

                "vdup.32    q0, %[color]                \n\t"

                PLD128(src, 128)

                // scale numerical interval [0-255], so load as 8 bits
                "vdup.8     d2, %[scale]                \n\t"

                PLD128(src, 256)

                "subs       %[count], %[count], #8      \n\t"

                PLD128(src, 384)

                "Loop_Color32:                          \n\t"

                // load src color, 8 pixels, 4 64 bit registers
                // (and increment src).
                "vld1.32    {d4-d7}, [%[src]]!          \n\t"

                PLD128(src, 384)

                // multiply long by scale, 64 bits at a time,
                // destination into a 128 bit register.
                "vmull.u8   q4, d4, d2                  \n\t"
                "vmull.u8   q5, d5, d2                  \n\t"
                "vmull.u8   q6, d6, d2                  \n\t"
                "vmull.u8   q7, d7, d2                  \n\t"

                // shift the 128 bit registers, containing the 16
                // bit scaled values back to 8 bits, narrowing the
                // results to 64 bit registers.
                "vshrn.i16  d8, q4, #8                  \n\t"
                "vshrn.i16  d9, q5, #8                  \n\t"
                "vshrn.i16  d10, q6, #8                 \n\t"
                "vshrn.i16  d11, q7, #8                 \n\t"

                // adding back the color, using 128 bit registers.
                "vadd.i8    q6, q4, q0                  \n\t"
                "vadd.i8    q7, q5, q0                  \n\t"

                // store back the 8 calculated pixels (2 128 bit
                // registers), and increment dst.
                "vst1.32    {d12-d15}, [%[dst]]!        \n\t"

                "subs       %[count], %[count], #8      \n\t"
                "bge        Loop_Color32                \n\t"
                : [src] "+r" (src), [dst] "+r" (dst), [count] "+r" (count)
                : [color] "r" (color), [scale] "r" (scale)
                : "cc", "memory",
                  "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
                  "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15"
                          );
            // At this point, if we went through the inline assembly, count is
            // a negative value:
            // if the value is -8, there is no pixel left to process.
            // if the value is -7, there is one pixel left to process
            // ...
            // And'ing it with 7 will give us the number of pixels
            // left to process.
            count = count & 0x7;
        }

        while (count > 0) {
            *dst = color + SkAlphaMulQ(*src, scale);
            src += 1;
            dst += 1;
            count--;
        }
    }
}

///////////////////////////////////////////////////////////////////////////////

const SkBlitRow::Proc sk_blitrow_platform_565_procs_arm_neon[] = {
    // no dither
    // NOTE: For the two functions below, we don't have a special version
    //       that assumes that each source pixel is opaque. But our S32A is
    //       still faster than the default, so use it.
    S32A_D565_Opaque_neon,  // really S32_D565_Opaque
    S32A_D565_Blend_neon,   // really S32_D565_Blend
    S32A_D565_Opaque_neon,
    S32A_D565_Blend_neon,

    // dither
    S32_D565_Opaque_Dither_neon,
    S32_D565_Blend_Dither_neon,
    S32A_D565_Opaque_Dither_neon,
    NULL,   // S32A_D565_Blend_Dither
};

const SkBlitRow::Proc sk_blitrow_platform_4444_procs_arm_neon[] = {
    // no dither
    NULL,   // S32_D4444_Opaque,
    NULL,   // S32_D4444_Blend,
    NULL,   // S32A_D4444_Opaque,
    NULL,   // S32A_D4444_Blend,

    // dither
    NULL,   // S32_D4444_Opaque_Dither,
    NULL,   // S32_D4444_Blend_Dither,
    NULL,   // S32A_D4444_Opaque_Dither,
    NULL,   // S32A_D4444_Blend_Dither
};

const SkBlitRow::Proc32 sk_blitrow_platform_32_procs_arm_neon[] = {
    NULL,   // S32_Opaque,
    S32_Blend_BlitRow32_neon,        // S32_Blend,
    S32A_Opaque_BlitRow32_neon,        // S32A_Opaque,
    S32A_Blend_BlitRow32_arm        // S32A_Blend
};