aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkBlitRow_opts_SSE2.cpp
blob: 7428584a89c5c33ad9f0dad9e44c1bdb81ade05a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
 **
 ** Copyright 2009, The Android Open Source Project
 **
 ** Licensed under the Apache License, Version 2.0 (the "License"); 
 ** you may not use this file except in compliance with the License. 
 ** You may obtain a copy of the License at 
 **
 **     http://www.apache.org/licenses/LICENSE-2.0 
 **
 ** Unless required by applicable law or agreed to in writing, software 
 ** distributed under the License is distributed on an "AS IS" BASIS, 
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
 ** See the License for the specific language governing permissions and 
 ** limitations under the License.
 */

#include "SkBlitRow.h"
#include "SkColorPriv.h"
#include "SkDither.h"

#include <emmintrin.h>

#ifdef _MSC_VER
static void getcpuid(int info_type, int info[4])
{
    __asm {
        mov    eax, [info_type]
        cpuid
        mov    edi, [info]
        mov    [edi], eax
        mov    [edi+4], ebx
        mov    [edi+8], ecx
        mov    [edi+12], edx
    }
}
#else
static void getcpuid(int info_type, int info[4])
{
    // We save and restore ebx, so this code can be compatible with -fPIC
    asm volatile (
        "pushl %%ebx      \n\t"
        "cpuid            \n\t"
        "movl %%ebx, %1   \n\t"
        "popl %%ebx       \n\t"
        : "=a"(info[0]), "=r"(info[1]), "=c"(info[2]), "=d"(info[3])
        : "a"(info_type)
        :
    );
}
#endif

/* SSE2 version of S32_Blend_BlitRow32()
 * portable version is in core/SkBlitRow_D32.cpp
 */
static void S32_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
                                     const SkPMColor* SK_RESTRICT src,
                                     int count, U8CPU alpha) {
    SkASSERT(alpha <= 255);
    if (count <= 0) {
        return;
    }

    uint32_t src_scale = SkAlpha255To256(alpha);
    uint32_t dst_scale = 256 - src_scale;

    const __m128i *s = reinterpret_cast<const __m128i*>(src);
    __m128i *d = reinterpret_cast<__m128i*>(dst);
    __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
    __m128i src_scale_wide = _mm_set1_epi16(src_scale);
    __m128i dst_scale_wide = _mm_set1_epi16(dst_scale);
    while (count >= 4) {
        // Load 4 pixels each of src and dest.
        __m128i src_pixel = _mm_loadu_si128(s);
        __m128i dst_pixel = _mm_loadu_si128(d);

        // Get red and blue pixels into lower byte of each word.
        __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
        __m128i src_rb = _mm_and_si128(rb_mask, src_pixel);

        // Get alpha and green into lower byte of each word.
        __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);
        __m128i src_ag = _mm_srli_epi16(src_pixel, 8);

        // Multiply by scale.
        src_rb = _mm_mullo_epi16(src_rb, src_scale_wide);
        src_ag = _mm_mullo_epi16(src_ag, src_scale_wide);
        dst_rb = _mm_mullo_epi16(dst_rb, dst_scale_wide);
        dst_ag = _mm_mullo_epi16(dst_ag, dst_scale_wide);

        // Divide by 256.
        src_rb = _mm_srli_epi16(src_rb, 8);
        dst_rb = _mm_srli_epi16(dst_rb, 8);
        src_ag = _mm_andnot_si128(rb_mask, src_ag);
        dst_ag = _mm_andnot_si128(rb_mask, dst_ag);

        // Combine back into RGBA.
        src_pixel = _mm_or_si128(src_rb, src_ag);
        dst_pixel = _mm_or_si128(dst_rb, dst_ag);

        // Add result
        __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
        _mm_storeu_si128(d, result);
        s++;
        d++;
        count -= 4;
    }

    src = reinterpret_cast<const SkPMColor*>(s);
    dst = reinterpret_cast<SkPMColor*>(d);
   while (count > 0) {
        *dst = SkAlphaMulQ(*src, src_scale) + SkAlphaMulQ(*dst, dst_scale);
        src++;
        dst++;
        count--;
    }
}

static void S32A_Opaque_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
                                       const SkPMColor* SK_RESTRICT src,
                                       int count, U8CPU alpha) {
    SkASSERT(alpha == 255);
    if (count <= 0) {
        return;
    }
    const __m128i *s = reinterpret_cast<const __m128i*>(src);
    __m128i *d = reinterpret_cast<__m128i*>(dst);
#ifdef SK_USE_ACCURATE_BLENDING
    __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
    __m128i c_128 = _mm_set1_epi16(128);  // 8 copies of 128 (16-bit)
    __m128i c_255 = _mm_set1_epi16(255);  // 8 copies of 255 (16-bit)
    while (count >= 4) {
        // Load 4 pixels
        __m128i src_pixel = _mm_loadu_si128(s);
        __m128i dst_pixel = _mm_loadu_si128(d);

        __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
        __m128i dst_ag = _mm_andnot_si128(rb_mask, dst_pixel);
        dst_ag = _mm_srli_epi16(dst_ag, 8);
        // Shift alphas down to lower 8 bits of each quad.
        __m128i alpha = _mm_srli_epi32(src_pixel, 24);

        // Copy alpha to upper 3rd byte of each quad
        alpha = _mm_or_si128(alpha, _mm_slli_epi32(alpha, 16));

        // Subtract alphas from 255, to get 0..255
        alpha = _mm_sub_epi16(c_255, alpha);

        // Multiply by red and blue by src alpha.
        dst_rb = _mm_mullo_epi16(dst_rb, alpha);
        // Multiply by alpha and green by src alpha.
        dst_ag = _mm_mullo_epi16(dst_ag, alpha);

        // dst_rb_low = (dst_rb >> 8)
        __m128i dst_rb_low = _mm_srli_epi16(dst_rb, 8);
        __m128i dst_ag_low = _mm_srli_epi16(dst_ag, 8);

        // dst_rb = (dst_rb + dst_rb_low + 128) >> 8
        dst_rb = _mm_add_epi16(dst_rb, dst_rb_low);
        dst_rb = _mm_add_epi16(dst_rb, c_128);
        dst_rb = _mm_srli_epi16(dst_rb, 8);

        // dst_ag = (dst_ag + dst_ag_low + 128) & ag_mask
        dst_ag = _mm_add_epi16(dst_ag, dst_ag_low);
        dst_ag = _mm_add_epi16(dst_ag, c_128);
        dst_ag = _mm_andnot_si128(rb_mask, dst_ag);

        // Combine back into RGBA.
        dst_pixel = _mm_or_si128(dst_rb, dst_ag);

        // Add result
        __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
        _mm_storeu_si128(d, result);
        s++;
        d++;
        count -= 4;
    }
#else
    __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
    __m128i c_256 = _mm_set1_epi16(0x0100);  // 8 copies of 256 (16-bit)
    while (count >= 4) {
        // Load 4 pixels
        __m128i src_pixel = _mm_loadu_si128(s);
        __m128i dst_pixel = _mm_loadu_si128(d);

        __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
        __m128i dst_ag = _mm_andnot_si128(rb_mask, dst_pixel);
        dst_ag = _mm_srli_epi16(dst_ag, 8);
        // Shift alphas down to lower 8 bits of each quad.
        __m128i alpha = _mm_srli_epi32(src_pixel, 24);

        // Copy alpha to upper 3rd byte of each quad
        alpha = _mm_or_si128(alpha, _mm_slli_epi32(alpha, 16));

        // Subtract alphas from 256, to get 1..256
        alpha = _mm_sub_epi16(c_256, alpha);

        // Multiply by red and blue by src alpha.
        dst_rb = _mm_mullo_epi16(dst_rb, alpha);
        // Multiply by alpha and green by src alpha.
        dst_ag = _mm_mullo_epi16(dst_ag, alpha);

        // Divide by 256.
        dst_rb = _mm_srli_epi16(dst_rb, 8);

        // Mask out high bits (already in the right place)
        dst_ag = _mm_andnot_si128(rb_mask, dst_ag);

        // Combine back into RGBA.
        dst_pixel = _mm_or_si128(dst_rb, dst_ag);

        // Add result
        __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
        _mm_storeu_si128(d, result);
        s++;
        d++;
        count -= 4;
    }
#endif

    src = reinterpret_cast<const SkPMColor*>(s);
    dst = reinterpret_cast<SkPMColor*>(d);
    while (count > 0) {
        *dst = SkPMSrcOver(*src, *dst);
        src++;
        dst++;
        count--;
    }
}

static void S32A_Blend_BlitRow32_SSE2(SkPMColor* SK_RESTRICT dst,
                                      const SkPMColor* SK_RESTRICT src,
                                      int count, U8CPU alpha) {
    SkASSERT(alpha <= 255);
    if (count <= 0) {
        return;
    }

    uint32_t src_scale = SkAlpha255To256(alpha);

    const __m128i *s = reinterpret_cast<const __m128i*>(src);
    __m128i *d = reinterpret_cast<__m128i*>(dst);
    __m128i src_scale_wide = _mm_set1_epi16(src_scale);
    __m128i rb_mask = _mm_set1_epi32(0x00FF00FF);
    __m128i c_256 = _mm_set1_epi16(256);  // 8 copies of 256 (16-bit)
    while (count >= 4) {
        // Load 4 pixels each of src and dest.
        __m128i src_pixel = _mm_loadu_si128(s);
        __m128i dst_pixel = _mm_loadu_si128(d);

        // Get red and blue pixels into lower byte of each word.
        __m128i dst_rb = _mm_and_si128(rb_mask, dst_pixel);
        __m128i src_rb = _mm_and_si128(rb_mask, src_pixel);

        // Get alpha and green into lower byte of each word.
        __m128i dst_ag = _mm_srli_epi16(dst_pixel, 8);
        __m128i src_ag = _mm_srli_epi16(src_pixel, 8);

        // Put per-pixel alpha in low byte of each word.
        __m128i dst_alpha = _mm_shufflehi_epi16(src_ag, 0xF5);
        dst_alpha = _mm_shufflelo_epi16(dst_alpha, 0xF5);

        // dst_alpha = dst_alpha * src_scale
        dst_alpha = _mm_mullo_epi16(dst_alpha, src_scale_wide);

        // Divide by 256.
        dst_alpha = _mm_srli_epi16(dst_alpha, 8);

        // Subtract alphas from 256, to get 1..256
        dst_alpha = _mm_sub_epi16(c_256, dst_alpha);

        // Multiply red and blue by dst pixel alpha.
        dst_rb = _mm_mullo_epi16(dst_rb, dst_alpha);
        // Multiply alpha and green by dst pixel alpha.
        dst_ag = _mm_mullo_epi16(dst_ag, dst_alpha);

        // Multiply red and blue by global alpha.
        src_rb = _mm_mullo_epi16(src_rb, src_scale_wide);
        // Multiply alpha and green by global alpha.
        src_ag = _mm_mullo_epi16(src_ag, src_scale_wide);

        // Divide by 256.
        dst_rb = _mm_srli_epi16(dst_rb, 8);
        src_rb = _mm_srli_epi16(src_rb, 8);

        // Mask out low bits (goodies already in the right place; no need to divide)
        dst_ag = _mm_andnot_si128(rb_mask, dst_ag);
        src_ag = _mm_andnot_si128(rb_mask, src_ag);

        // Combine back into RGBA.
        dst_pixel = _mm_or_si128(dst_rb, dst_ag);
        src_pixel = _mm_or_si128(src_rb, src_ag);

        // Add two pixels into result.
        __m128i result = _mm_add_epi8(src_pixel, dst_pixel);
        _mm_storeu_si128(d, result);
        s++;
        d++;
        count -= 4;
    }
    src = reinterpret_cast<const SkPMColor*>(s);
    dst = reinterpret_cast<SkPMColor*>(d);
    while (count > 0) {
        *dst = SkBlendARGB32(*src, *dst, alpha);
        src++;
        dst++;
        count--;
    }
}

///////////////////////////////////////////////////////////////////////////////

static const SkBlitRow::Proc32 platform_32_procs[] = {
    NULL,                               // S32_Opaque,
    S32_Blend_BlitRow32_SSE2,           // S32_Blend,
    S32A_Opaque_BlitRow32_SSE2,         // S32A_Opaque
    S32A_Blend_BlitRow32_SSE2,          // S32A_Blend,
};

SkBlitRow::Proc SkBlitRow::PlatformProcs4444(unsigned flags) {
    return NULL;
}

SkBlitRow::Proc SkBlitRow::PlatformProcs565(unsigned flags) {
    return NULL;
}

SkBlitRow::Proc32 SkBlitRow::PlatformProcs32(unsigned flags) {
    static bool once;
    static bool hasSSE2;
    if (!once) {
        int cpu_info[4] = { 0 };
        getcpuid(1, cpu_info);
        hasSSE2 = (cpu_info[3] & (1<<26)) != 0;
        once = true;
    }
    if (hasSSE2) {
        return platform_32_procs[flags];
    } else {
        return NULL;
    }
}