1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkBlitRow_opts_DEFINED
#define SkBlitRow_opts_DEFINED
#include "Sk4px.h"
#include "SkColorData.h"
#include "SkMSAN.h"
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "SkColor_opts_SSE2.h"
#include <immintrin.h>
#endif
namespace SK_OPTS_NS {
// Color32 uses the blend_256_round_alt algorithm from tests/BlendTest.cpp.
// It's not quite perfect, but it's never wrong in the interesting edge cases,
// and it's quite a bit faster than blend_perfect.
//
// blend_256_round_alt is our currently blessed algorithm. Please use it or an analogous one.
static inline
void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) {
unsigned invA = 255 - SkGetPackedA32(color);
invA += invA >> 7;
SkASSERT(invA < 256); // We've should have already handled alpha == 0 externally.
Sk16h colorHighAndRound = Sk4px::DupPMColor(color).widenHi() + Sk16h(128);
Sk16b invA_16x(invA);
Sk4px::MapSrc(count, dst, src, [&](const Sk4px& src4) -> Sk4px {
return (src4 * invA_16x).addNarrowHi(colorHighAndRound);
});
}
#if defined(SK_ARM_HAS_NEON)
// Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i],
// y[i] are the i-th lanes of the corresponding NEON vectors.
static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) {
uint16x8_t prod = vmull_u8(x, y);
return vraddhn_u16(prod, vrshrq_n_u16(prod, 8));
}
// The implementations of SkPMSrcOver below perform alpha blending consistently with
// SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as:
//
// result_i = src_i + rint(g(src_alpha, dst_i))
//
// where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer.
// In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value
// of the same color component for 8 consecutive pixels. The result of this function follows the
// same convention.
static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) {
uint8x8_t nalphas = vmvn_u8(src.val[3]);
uint8x8x4_t result;
result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0]));
result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1]));
result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2]));
result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3]));
return result;
}
// In this variant of SkPMSrcOver dst and src contain the color components of two consecutive
// pixels. The return value follows the same convention.
static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) {
const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303);
uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices));
return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst));
}
#endif
/*not static*/ inline
void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) {
SkASSERT(alpha == 0xFF);
sk_msan_assert_initialized(src, src+len);
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
while (len >= 16) {
// Load 16 source pixels.
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
const auto alphaMask = _mm_set1_epi32(0xFF000000);
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
if (_mm_testz_si128(ORed, alphaMask)) {
// All 16 source pixels are transparent. Nothing to do.
src += 16;
dst += 16;
len -= 16;
continue;
}
auto d0 = (__m128i*)(dst) + 0,
d1 = (__m128i*)(dst) + 1,
d2 = (__m128i*)(dst) + 2,
d3 = (__m128i*)(dst) + 3;
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
if (_mm_testc_si128(ANDed, alphaMask)) {
// All 16 source pixels are opaque. SrcOver becomes Src.
_mm_storeu_si128(d0, s0);
_mm_storeu_si128(d1, s1);
_mm_storeu_si128(d2, s2);
_mm_storeu_si128(d3, s3);
src += 16;
dst += 16;
len -= 16;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
src += 16;
dst += 16;
len -= 16;
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
while (len >= 16) {
// Load 16 source pixels.
auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0),
s1 = _mm_loadu_si128((const __m128i*)(src) + 1),
s2 = _mm_loadu_si128((const __m128i*)(src) + 2),
s3 = _mm_loadu_si128((const __m128i*)(src) + 3);
const auto alphaMask = _mm_set1_epi32(0xFF000000);
auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0)));
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask),
_mm_setzero_si128()))) {
// All 16 source pixels are transparent. Nothing to do.
src += 16;
dst += 16;
len -= 16;
continue;
}
auto d0 = (__m128i*)(dst) + 0,
d1 = (__m128i*)(dst) + 1,
d2 = (__m128i*)(dst) + 2,
d3 = (__m128i*)(dst) + 3;
auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0)));
if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask),
alphaMask))) {
// All 16 source pixels are opaque. SrcOver becomes Src.
_mm_storeu_si128(d0, s0);
_mm_storeu_si128(d1, s1);
_mm_storeu_si128(d2, s2);
_mm_storeu_si128(d3, s3);
src += 16;
dst += 16;
len -= 16;
continue;
}
// TODO: This math is wrong.
// Do SrcOver.
_mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0)));
_mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1)));
_mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2)));
_mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3)));
src += 16;
dst += 16;
len -= 16;
}
#elif defined(SK_ARM_HAS_NEON)
// Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it
// underperformed on some of the platforms under test for inputs with frequent transitions of
// alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth
// revisiting the situation in the future.
while (len >= 8) {
// Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component
// for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8
// pixels).
uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src));
src += 8;
len -= 8;
// We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels
// are all transparent), the second when all alphas are fully set (they are all opaque).
uint8x8_t alphas = src_col.val[3];
uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0);
if (alphas_u64 == 0) {
// All pixels transparent.
dst += 8;
continue;
}
if (~alphas_u64 == 0) {
// All pixels opaque.
vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col);
dst += 8;
continue;
}
uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst));
vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col));
dst += 8;
}
// Deal with leftover pixels.
for (; len >= 2; len -= 2, src += 2, dst += 2) {
uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src));
uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst));
vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2));
}
if (len != 0) {
uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8(*dst), vcreate_u8(*src));
vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0);
}
return;
#endif
while (len-- > 0) {
// This 0xFF000000 is not semantically necessary, but for compatibility
// with chromium:611002 we need to keep it until we figure out where
// the non-premultiplied src values (like 0x00FFFFFF) are coming from.
// TODO(mtklein): sort this out and assert *src is premul here.
if (*src & 0xFF000000) {
*dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst);
}
src++;
dst++;
}
}
} // SK_OPTS_NS
#endif//SkBlitRow_opts_DEFINED
|