aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkBitmapProcState_opts_arm.cpp
blob: 3a3cb8567c9525a0719fdfa99493a63bcfad6ff6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/*
 * Copyright 2009 The Android Open Source Project
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#include "SkBitmapProcState.h"
#include "SkColorPriv.h"
#include "SkPaint.h"
#include "SkTypes.h"
#include "SkUtils.h"
#include "SkUtilsArm.h"

#include "SkConvolver.h"

#if SK_ARM_ARCH >= 6 && !defined(SK_CPU_BENDIAN)
void SI8_D16_nofilter_DX_arm(
    const SkBitmapProcState& s,
    const uint32_t* SK_RESTRICT xy,
    int count,
    uint16_t* SK_RESTRICT colors) SK_ATTRIBUTE_OPTIMIZE_O1;

void SI8_D16_nofilter_DX_arm(const SkBitmapProcState& s,
                             const uint32_t* SK_RESTRICT xy,
                             int count, uint16_t* SK_RESTRICT colors) {
    SkASSERT(count > 0 && colors != NULL);
    SkASSERT(s.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask));
    SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel);

    const uint16_t* SK_RESTRICT table = s.fBitmap->getColorTable()->lock16BitCache();
    const uint8_t* SK_RESTRICT srcAddr = (const uint8_t*)s.fBitmap->getPixels();

    // buffer is y32, x16, x16, x16, x16, x16
    // bump srcAddr to the proper row, since we're told Y never changes
    SkASSERT((unsigned)xy[0] < (unsigned)s.fBitmap->height());
    srcAddr = (const uint8_t*)((const char*)srcAddr +
                               xy[0] * s.fBitmap->rowBytes());

    uint8_t src;

    if (1 == s.fBitmap->width()) {
        src = srcAddr[0];
        uint16_t dstValue = table[src];
        sk_memset16(colors, dstValue, count);
    } else {
        int i;
        int count8 = count >> 3;
        const uint16_t* SK_RESTRICT xx = (const uint16_t*)(xy + 1);

        asm volatile (
                      "cmp        %[count8], #0                   \n\t"   // compare loop counter with 0
                      "beq        2f                              \n\t"   // if loop counter == 0, exit
                      "1:                                             \n\t"
                      "ldmia      %[xx]!, {r5, r7, r9, r11}       \n\t"   // load ptrs to pixels 0-7
                      "subs       %[count8], %[count8], #1        \n\t"   // decrement loop counter
                      "uxth       r4, r5                          \n\t"   // extract ptr 0
                      "mov        r5, r5, lsr #16                 \n\t"   // extract ptr 1
                      "uxth       r6, r7                          \n\t"   // extract ptr 2
                      "mov        r7, r7, lsr #16                 \n\t"   // extract ptr 3
                      "ldrb       r4, [%[srcAddr], r4]            \n\t"   // load pixel 0 from image
                      "uxth       r8, r9                          \n\t"   // extract ptr 4
                      "ldrb       r5, [%[srcAddr], r5]            \n\t"   // load pixel 1 from image
                      "mov        r9, r9, lsr #16                 \n\t"   // extract ptr 5
                      "ldrb       r6, [%[srcAddr], r6]            \n\t"   // load pixel 2 from image
                      "uxth       r10, r11                        \n\t"   // extract ptr 6
                      "ldrb       r7, [%[srcAddr], r7]            \n\t"   // load pixel 3 from image
                      "mov        r11, r11, lsr #16               \n\t"   // extract ptr 7
                      "ldrb       r8, [%[srcAddr], r8]            \n\t"   // load pixel 4 from image
                      "add        r4, r4, r4                      \n\t"   // double pixel 0 for RGB565 lookup
                      "ldrb       r9, [%[srcAddr], r9]            \n\t"   // load pixel 5 from image
                      "add        r5, r5, r5                      \n\t"   // double pixel 1 for RGB565 lookup
                      "ldrb       r10, [%[srcAddr], r10]          \n\t"   // load pixel 6 from image
                      "add        r6, r6, r6                      \n\t"   // double pixel 2 for RGB565 lookup
                      "ldrb       r11, [%[srcAddr], r11]          \n\t"   // load pixel 7 from image
                      "add        r7, r7, r7                      \n\t"   // double pixel 3 for RGB565 lookup
                      "ldrh       r4, [%[table], r4]              \n\t"   // load pixel 0 RGB565 from colmap
                      "add        r8, r8, r8                      \n\t"   // double pixel 4 for RGB565 lookup
                      "ldrh       r5, [%[table], r5]              \n\t"   // load pixel 1 RGB565 from colmap
                      "add        r9, r9, r9                      \n\t"   // double pixel 5 for RGB565 lookup
                      "ldrh       r6, [%[table], r6]              \n\t"   // load pixel 2 RGB565 from colmap
                      "add        r10, r10, r10                   \n\t"   // double pixel 6 for RGB565 lookup
                      "ldrh       r7, [%[table], r7]              \n\t"   // load pixel 3 RGB565 from colmap
                      "add        r11, r11, r11                   \n\t"   // double pixel 7 for RGB565 lookup
                      "ldrh       r8, [%[table], r8]              \n\t"   // load pixel 4 RGB565 from colmap
                      "ldrh       r9, [%[table], r9]              \n\t"   // load pixel 5 RGB565 from colmap
                      "ldrh       r10, [%[table], r10]            \n\t"   // load pixel 6 RGB565 from colmap
                      "ldrh       r11, [%[table], r11]            \n\t"   // load pixel 7 RGB565 from colmap
                      "pkhbt      r5, r4, r5, lsl #16             \n\t"   // pack pixels 0 and 1
                      "pkhbt      r6, r6, r7, lsl #16             \n\t"   // pack pixels 2 and 3
                      "pkhbt      r8, r8, r9, lsl #16             \n\t"   // pack pixels 4 and 5
                      "pkhbt      r10, r10, r11, lsl #16          \n\t"   // pack pixels 6 and 7
                      "stmia      %[colors]!, {r5, r6, r8, r10}   \n\t"   // store last 8 pixels
                      "bgt        1b                              \n\t"   // loop if counter > 0
                      "2:                                             \n\t"
                      : [xx] "+r" (xx), [count8] "+r" (count8), [colors] "+r" (colors)
                      : [table] "r" (table), [srcAddr] "r" (srcAddr)
                      : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
                      );

        for (i = (count & 7); i > 0; --i) {
            src = srcAddr[*xx++]; *colors++ = table[src];
        }
    }

    s.fBitmap->getColorTable()->unlock16BitCache();
}

void SI8_opaque_D32_nofilter_DX_arm(
    const SkBitmapProcState& s,
    const uint32_t* SK_RESTRICT xy,
    int count,
    SkPMColor* SK_RESTRICT colors) SK_ATTRIBUTE_OPTIMIZE_O1;

void SI8_opaque_D32_nofilter_DX_arm(const SkBitmapProcState& s,
                                    const uint32_t* SK_RESTRICT xy,
                                    int count, SkPMColor* SK_RESTRICT colors) {
    SkASSERT(count > 0 && colors != NULL);
    SkASSERT(s.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask));
    SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel);

    const SkPMColor* SK_RESTRICT table = s.fBitmap->getColorTable()->lockColors();
    const uint8_t* SK_RESTRICT srcAddr = (const uint8_t*)s.fBitmap->getPixels();

    // buffer is y32, x16, x16, x16, x16, x16
    // bump srcAddr to the proper row, since we're told Y never changes
    SkASSERT((unsigned)xy[0] < (unsigned)s.fBitmap->height());
    srcAddr = (const uint8_t*)((const char*)srcAddr + xy[0] * s.fBitmap->rowBytes());

    if (1 == s.fBitmap->width()) {
        uint8_t src = srcAddr[0];
        SkPMColor dstValue = table[src];
        sk_memset32(colors, dstValue, count);
    } else {
        const uint16_t* xx = (const uint16_t*)(xy + 1);

        asm volatile (
                      "subs       %[count], %[count], #8          \n\t"   // decrement count by 8, set flags
                      "blt        2f                              \n\t"   // if count < 0, branch to singles
                      "1:                                             \n\t"   // eights loop
                      "ldmia      %[xx]!, {r5, r7, r9, r11}       \n\t"   // load ptrs to pixels 0-7
                      "uxth       r4, r5                          \n\t"   // extract ptr 0
                      "mov        r5, r5, lsr #16                 \n\t"   // extract ptr 1
                      "uxth       r6, r7                          \n\t"   // extract ptr 2
                      "mov        r7, r7, lsr #16                 \n\t"   // extract ptr 3
                      "ldrb       r4, [%[srcAddr], r4]            \n\t"   // load pixel 0 from image
                      "uxth       r8, r9                          \n\t"   // extract ptr 4
                      "ldrb       r5, [%[srcAddr], r5]            \n\t"   // load pixel 1 from image
                      "mov        r9, r9, lsr #16                 \n\t"   // extract ptr 5
                      "ldrb       r6, [%[srcAddr], r6]            \n\t"   // load pixel 2 from image
                      "uxth       r10, r11                        \n\t"   // extract ptr 6
                      "ldrb       r7, [%[srcAddr], r7]            \n\t"   // load pixel 3 from image
                      "mov        r11, r11, lsr #16               \n\t"   // extract ptr 7
                      "ldrb       r8, [%[srcAddr], r8]            \n\t"   // load pixel 4 from image
                      "ldrb       r9, [%[srcAddr], r9]            \n\t"   // load pixel 5 from image
                      "ldrb       r10, [%[srcAddr], r10]          \n\t"   // load pixel 6 from image
                      "ldrb       r11, [%[srcAddr], r11]          \n\t"   // load pixel 7 from image
                      "ldr        r4, [%[table], r4, lsl #2]      \n\t"   // load pixel 0 SkPMColor from colmap
                      "ldr        r5, [%[table], r5, lsl #2]      \n\t"   // load pixel 1 SkPMColor from colmap
                      "ldr        r6, [%[table], r6, lsl #2]      \n\t"   // load pixel 2 SkPMColor from colmap
                      "ldr        r7, [%[table], r7, lsl #2]      \n\t"   // load pixel 3 SkPMColor from colmap
                      "ldr        r8, [%[table], r8, lsl #2]      \n\t"   // load pixel 4 SkPMColor from colmap
                      "ldr        r9, [%[table], r9, lsl #2]      \n\t"   // load pixel 5 SkPMColor from colmap
                      "ldr        r10, [%[table], r10, lsl #2]    \n\t"   // load pixel 6 SkPMColor from colmap
                      "ldr        r11, [%[table], r11, lsl #2]    \n\t"   // load pixel 7 SkPMColor from colmap
                      "subs       %[count], %[count], #8          \n\t"   // decrement loop counter
                      "stmia      %[colors]!, {r4-r11}            \n\t"   // store 8 pixels
                      "bge        1b                              \n\t"   // loop if counter >= 0
                      "2:                                             \n\t"
                      "adds       %[count], %[count], #8          \n\t"   // fix up counter, set flags
                      "beq        4f                              \n\t"   // if count == 0, branch to exit
                      "3:                                             \n\t"   // singles loop
                      "ldrh       r4, [%[xx]], #2                 \n\t"   // load pixel ptr
                      "subs       %[count], %[count], #1          \n\t"   // decrement loop counter
                      "ldrb       r5, [%[srcAddr], r4]            \n\t"   // load pixel from image
                      "ldr        r6, [%[table], r5, lsl #2]      \n\t"   // load SkPMColor from colmap
                      "str        r6, [%[colors]], #4             \n\t"   // store pixel, update ptr
                      "bne        3b                              \n\t"   // loop if counter != 0
                      "4:                                             \n\t"   // exit
                      : [xx] "+r" (xx), [count] "+r" (count), [colors] "+r" (colors)
                      : [table] "r" (table), [srcAddr] "r" (srcAddr)
                      : "memory", "cc", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11"
                      );
    }

    s.fBitmap->getColorTable()->unlockColors(false);
}
#endif // SK_ARM_ARCH >= 6 && !defined(SK_CPU_BENDIAN)

///////////////////////////////////////////////////////////////////////////////

/*  If we replace a sampleproc, then we null-out the associated shaderproc,
    otherwise the shader won't even look at the matrix/sampler
 */
void SkBitmapProcState::platformProcs() {
    bool isOpaque = 256 == fAlphaScale;
    bool justDx = false;

    if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
        justDx = true;
    }

    switch (fBitmap->config()) {
        case SkBitmap::kIndex8_Config:
#if SK_ARM_ARCH >= 6 && !defined(SK_CPU_BENDIAN)
            if (justDx && SkPaint::kNone_FilterLevel == fFilterLevel) {
#if 0   /* crashing on android device */
                fSampleProc16 = SI8_D16_nofilter_DX_arm;
                fShaderProc16 = NULL;
#endif
                if (isOpaque) {
                    // this one is only very slighty faster than the C version
                    fSampleProc32 = SI8_opaque_D32_nofilter_DX_arm;
                    fShaderProc32 = NULL;
                }
            }
#endif
            break;
        default:
            break;
    }
}

/////////////////////////////////////

/* FUNCTIONS BELOW ARE SCALAR STUBS INTENDED FOR ARM DEVELOPERS TO REPLACE */

/////////////////////////////////////


static inline unsigned char ClampTo8(int a) {
    if (static_cast<unsigned>(a) < 256) {
        return a;  // Avoid the extra check in the common case.
    }
    if (a < 0) {
        return 0;
    }
    return 255;
}

// Convolves horizontally along a single row. The row data is given in
// |srcData| and continues for the numValues() of the filter.
void convolveHorizontally_arm(const unsigned char* srcData,
                              const SkConvolutionFilter1D& filter,
                              unsigned char* outRow,
                              bool hasAlpha) {
    // Loop over each pixel on this row in the output image.
    int numValues = filter.numValues();
    for (int outX = 0; outX < numValues; outX++) {
        // Get the filter that determines the current output pixel.
        int filterOffset, filterLength;
        const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
            filter.FilterForValue(outX, &filterOffset, &filterLength);

        // Compute the first pixel in this row that the filter affects. It will
        // touch |filterLength| pixels (4 bytes each) after this.
        const unsigned char* rowToFilter = &srcData[filterOffset * 4];

        // Apply the filter to the row to get the destination pixel in |accum|.
        int accum[4] = {0};
        for (int filterX = 0; filterX < filterLength; filterX++) {
            SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterX];
            accum[0] += curFilter * rowToFilter[filterX * 4 + 0];
            accum[1] += curFilter * rowToFilter[filterX * 4 + 1];
            accum[2] += curFilter * rowToFilter[filterX * 4 + 2];
            if (hasAlpha) {
                accum[3] += curFilter * rowToFilter[filterX * 4 + 3];
            }
        }

        // Bring this value back in range. All of the filter scaling factors
        // are in fixed point with kShiftBits bits of fractional part.
        accum[0] >>= SkConvolutionFilter1D::kShiftBits;
        accum[1] >>= SkConvolutionFilter1D::kShiftBits;
        accum[2] >>= SkConvolutionFilter1D::kShiftBits;
        if (hasAlpha) {
            accum[3] >>= SkConvolutionFilter1D::kShiftBits;
        }

        // Store the new pixel.
        outRow[outX * 4 + 0] = ClampTo8(accum[0]);
        outRow[outX * 4 + 1] = ClampTo8(accum[1]);
        outRow[outX * 4 + 2] = ClampTo8(accum[2]);
        if (hasAlpha) {
            outRow[outX * 4 + 3] = ClampTo8(accum[3]);
        }
    }
}

// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |sourceDataRows| array, with each row
// being |pixelWidth| wide.
//
// The output must have room for |pixelWidth * 4| bytes.
template<bool hasAlpha>
    void convolveVertically_arm(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
                            int filterLength,
                            unsigned char* const* sourceDataRows,
                            int pixelWidth,
                            unsigned char* outRow) {
        // We go through each column in the output and do a vertical convolution,
        // generating one output pixel each time.
        for (int outX = 0; outX < pixelWidth; outX++) {
            // Compute the number of bytes over in each row that the current column
            // we're convolving starts at. The pixel will cover the next 4 bytes.
            int byteOffset = outX * 4;

            // Apply the filter to one column of pixels.
            int accum[4] = {0};
            for (int filterY = 0; filterY < filterLength; filterY++) {
                SkConvolutionFilter1D::ConvolutionFixed curFilter = filterValues[filterY];
                accum[0] += curFilter * sourceDataRows[filterY][byteOffset + 0];
                accum[1] += curFilter * sourceDataRows[filterY][byteOffset + 1];
                accum[2] += curFilter * sourceDataRows[filterY][byteOffset + 2];
                if (hasAlpha) {
                    accum[3] += curFilter * sourceDataRows[filterY][byteOffset + 3];
                }
            }

            // Bring this value back in range. All of the filter scaling factors
            // are in fixed point with kShiftBits bits of precision.
            accum[0] >>= SkConvolutionFilter1D::kShiftBits;
            accum[1] >>= SkConvolutionFilter1D::kShiftBits;
            accum[2] >>= SkConvolutionFilter1D::kShiftBits;
            if (hasAlpha) {
                accum[3] >>= SkConvolutionFilter1D::kShiftBits;
            }

            // Store the new pixel.
            outRow[byteOffset + 0] = ClampTo8(accum[0]);
            outRow[byteOffset + 1] = ClampTo8(accum[1]);
            outRow[byteOffset + 2] = ClampTo8(accum[2]);
            if (hasAlpha) {
                unsigned char alpha = ClampTo8(accum[3]);

                // Make sure the alpha channel doesn't come out smaller than any of the
                // color channels. We use premultipled alpha channels, so this should
                // never happen, but rounding errors will cause this from time to time.
                // These "impossible" colors will cause overflows (and hence random pixel
                // values) when the resulting bitmap is drawn to the screen.
                //
                // We only need to do this when generating the final output row (here).
                int maxColorChannel = SkTMax(outRow[byteOffset + 0],
                                               SkTMax(outRow[byteOffset + 1],
                                                      outRow[byteOffset + 2]));
                if (alpha < maxColorChannel) {
                    outRow[byteOffset + 3] = maxColorChannel;
                } else {
                    outRow[byteOffset + 3] = alpha;
                }
            } else {
                // No alpha channel, the image is opaque.
                outRow[byteOffset + 3] = 0xff;
            }
        }
    }

void convolveVertically_arm(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
                            int filterLength,
                            unsigned char* const* sourceDataRows,
                            int pixelWidth,
                            unsigned char* outRow,
                            bool sourceHasAlpha) {
    if (sourceHasAlpha) {
        convolveVertically_arm<true>(filterValues, filterLength,
                                     sourceDataRows, pixelWidth,
                                     outRow);
    } else {
        convolveVertically_arm<false>(filterValues, filterLength,
                                      sourceDataRows, pixelWidth,
                                      outRow);
    }
}

// Convolves horizontally along four rows. The row data is given in
// |src_data| and continues for the num_values() of the filter.
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
// refer to that function for detailed comments.
void convolve4RowsHorizontally_arm(const unsigned char* src_data[4],
                                   const SkConvolutionFilter1D& filter,
                                   unsigned char* out_row[4]) {
}

///////////////////////////

/* STOP REWRITING FUNCTIONS HERE, BUT DON'T FORGET TO EDIT THE
   PLATFORM CONVOLUTION PROCS BELOW */

///////////////////////////

void applySIMDPadding_arm(SkConvolutionFilter1D *filter) {
    // Padding |paddingCount| of more dummy coefficients after the coefficients
    // of last filter to prevent SIMD instructions which load 8 or 16 bytes
    // together to access invalid memory areas. We are not trying to align the
    // coefficients right now due to the opaqueness of <vector> implementation.
    // This has to be done after all |AddFilter| calls.
    for (int i = 0; i < 8; ++i) {
        filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
    }
}

void SkBitmapProcState::platformConvolutionProcs(SkConvolutionProcs* procs) {
    if (sk_cpu_arm_has_neon()) {
        procs->fExtraHorizontalReads = 3;
        procs->fConvolveVertically = &convolveVertically_arm;

        // next line is commented out because the four-row convolution function above is
        // just a no-op.  Please see the comment above its definition, and the SSE implementation
        // in SkBitmapProcState_opts_SSE2.cpp for guidance on its semantics.
        // leaving it as NULL will just cause the convolution system to not attempt
        // to operate on four rows at once, which is correct but not performance-optimal.

        // procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_arm;

        procs->fConvolve4RowsHorizontally = NULL;

        procs->fConvolveHorizontally = &convolveHorizontally_arm;
        procs->fApplySIMDPadding = &applySIMDPadding_arm;
    }
}