aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/SkBitmapFilter_opts_SSE2.cpp
blob: 04f14863d744fa46c1bd2258efe05c8ac445bcc3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include <emmintrin.h>
#include "SkBitmap.h"
#include "SkBitmapFilter_opts_SSE2.h"
#include "SkBitmapProcState.h"
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkConvolver.h"
#include "SkShader.h"
#include "SkUnPreMultiply.h"

#if 0
static inline void print128i(__m128i value) {
    int *v = (int*) &value;
    printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]);
}

static inline void print128i_16(__m128i value) {
    short *v = (short*) &value;
    printf("% .5d % .5d % .5d % .5d % .5d % .5d % .5d % .5d\n", v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
}

static inline void print128i_8(__m128i value) {
    unsigned char *v = (unsigned char*) &value;
    printf("%.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u\n",
           v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7],
           v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15]
           );
}

static inline void print128f(__m128 value) {
    float *f = (float*) &value;
    printf("%3.4f %3.4f %3.4f %3.4f\n", f[0], f[1], f[2], f[3]);
}
#endif

// because the border is handled specially, this is guaranteed to have all 16 pixels
// available to it without running off the bitmap's edge.

void highQualityFilter_SSE2(const SkBitmapProcState& s, int x, int y,
                            SkPMColor* SK_RESTRICT colors, int count) {

    const int maxX = s.fBitmap->width();
    const int maxY = s.fBitmap->height();
    SkAutoTMalloc<SkScalar> xWeights(maxX);

    while (count-- > 0) {
        SkPoint srcPt;
        s.fInvProc(s.fInvMatrix, x + 0.5f, y + 0.5f, &srcPt);
        srcPt.fX -= SK_ScalarHalf;
        srcPt.fY -= SK_ScalarHalf;

        __m128 weight = _mm_setzero_ps();
        __m128 accum = _mm_setzero_ps();

        int y0 = SkClampMax(SkScalarCeilToInt(srcPt.fY-s.getBitmapFilter()->width()), maxY);
        int y1 = SkClampMax(SkScalarFloorToInt(srcPt.fY+s.getBitmapFilter()->width()+1), maxY);
        int x0 = SkClampMax(SkScalarCeilToInt(srcPt.fX-s.getBitmapFilter()->width()), maxX);
        int x1 = SkClampMax(SkScalarFloorToInt(srcPt.fX+s.getBitmapFilter()->width())+1, maxX);

        for (int srcX = x0; srcX < x1 ; srcX++) {
            // Looking these up once instead of each loop is a ~15% speedup.
            xWeights[srcX - x0] = s.getBitmapFilter()->lookupScalar((srcPt.fX - srcX));
        }

        for (int srcY = y0; srcY < y1; srcY++) {
            SkScalar yWeight = s.getBitmapFilter()->lookupScalar((srcPt.fY - srcY));

            for (int srcX = x0; srcX < x1 ; srcX++) {
                SkScalar xWeight = xWeights[srcX - x0];

                SkScalar combined_weight = SkScalarMul(xWeight, yWeight);

                SkPMColor color = *s.fBitmap->getAddr32(srcX, srcY);

                __m128i c = _mm_cvtsi32_si128(color);
                c = _mm_unpacklo_epi8(c, _mm_setzero_si128());
                c = _mm_unpacklo_epi16(c, _mm_setzero_si128());
                __m128 cfloat = _mm_cvtepi32_ps(c);

                __m128 weightVector = _mm_set1_ps(combined_weight);
                accum = _mm_add_ps(accum, _mm_mul_ps(cfloat, weightVector));
                weight = _mm_add_ps( weight, weightVector );
            }
        }

        accum = _mm_div_ps(accum, weight);
        accum = _mm_add_ps(accum, _mm_set1_ps(0.5f));
        __m128i accumInt = _mm_cvttps_epi32(accum);
        accumInt = _mm_packs_epi32(accumInt, _mm_setzero_si128());
        accumInt = _mm_packus_epi16(accumInt, _mm_setzero_si128());
        SkPMColor c = _mm_cvtsi128_si32(accumInt);

        int a = SkClampMax(SkGetPackedA32(c), 255);
        int r = SkClampMax(SkGetPackedR32(c), a);
        int g = SkClampMax(SkGetPackedG32(c), a);
        int b = SkClampMax(SkGetPackedB32(c), a);

        *colors++ = SkPackARGB32(a, r, g, b);

        x++;
    }
}

// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the num_values() of the filter.
void convolveHorizontally_SSE2(const unsigned char* src_data,
                               const SkConvolutionFilter1D& filter,
                               unsigned char* out_row,
                               bool /*has_alpha*/) {
    int num_values = filter.numValues();

    int filter_offset, filter_length;
    __m128i zero = _mm_setzero_si128();
    __m128i mask[4];
    // |mask| will be used to decimate all extra filter coefficients that are
    // loaded by SIMD when |filter_length| is not divisible by 4.
    // mask[0] is not used in following algorithm.
    mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
    mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
    mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);

    // Output one pixel each iteration, calculating all channels (RGBA) together.
    for (int out_x = 0; out_x < num_values; out_x++) {
        const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
            filter.FilterForValue(out_x, &filter_offset, &filter_length);

        __m128i accum = _mm_setzero_si128();

        // Compute the first pixel in this row that the filter affects. It will
        // touch |filter_length| pixels (4 bytes each) after this.
        const __m128i* row_to_filter =
            reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);

        // We will load and accumulate with four coefficients per iteration.
        for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {

            // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
            __m128i coeff, coeff16;
            // [16] xx xx xx xx c3 c2 c1 c0
            coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
            // [16] xx xx xx xx c1 c1 c0 c0
            coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
            // [16] c1 c1 c1 c1 c0 c0 c0 c0
            coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);

            // Load four pixels => unpack the first two pixels to 16 bits =>
            // multiply with coefficients => accumulate the convolution result.
            // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
            __m128i src8 = _mm_loadu_si128(row_to_filter);
            // [16] a1 b1 g1 r1 a0 b0 g0 r0
            __m128i src16 = _mm_unpacklo_epi8(src8, zero);
            __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
            __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
            // [32]  a0*c0 b0*c0 g0*c0 r0*c0
            __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum = _mm_add_epi32(accum, t);
            // [32]  a1*c1 b1*c1 g1*c1 r1*c1
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);
            accum = _mm_add_epi32(accum, t);

            // Duplicate 3rd and 4th coefficients for all channels =>
            // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
            // => accumulate the convolution results.
            // [16] xx xx xx xx c3 c3 c2 c2
            coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
            // [16] c3 c3 c3 c3 c2 c2 c2 c2
            coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
            // [16] a3 g3 b3 r3 a2 g2 b2 r2
            src16 = _mm_unpackhi_epi8(src8, zero);
            mul_hi = _mm_mulhi_epi16(src16, coeff16);
            mul_lo = _mm_mullo_epi16(src16, coeff16);
            // [32]  a2*c2 b2*c2 g2*c2 r2*c2
            t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum = _mm_add_epi32(accum, t);
            // [32]  a3*c3 b3*c3 g3*c3 r3*c3
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);
            accum = _mm_add_epi32(accum, t);

            // Advance the pixel and coefficients pointers.
            row_to_filter += 1;
            filter_values += 4;
        }

        // When |filter_length| is not divisible by 4, we need to decimate some of
        // the filter coefficient that was loaded incorrectly to zero; Other than
        // that the algorithm is same with above, exceot that the 4th pixel will be
        // always absent.
        int r = filter_length&3;
        if (r) {
            // Note: filter_values must be padded to align_up(filter_offset, 8).
            __m128i coeff, coeff16;
            coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
            // Mask out extra filter taps.
            coeff = _mm_and_si128(coeff, mask[r]);
            coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
            coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);

            // Note: line buffer must be padded to align_up(filter_offset, 16).
            // We resolve this by use C-version for the last horizontal line.
            __m128i src8 = _mm_loadu_si128(row_to_filter);
            __m128i src16 = _mm_unpacklo_epi8(src8, zero);
            __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
            __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
            __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum = _mm_add_epi32(accum, t);
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);
            accum = _mm_add_epi32(accum, t);

            src16 = _mm_unpackhi_epi8(src8, zero);
            coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
            coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
            mul_hi = _mm_mulhi_epi16(src16, coeff16);
            mul_lo = _mm_mullo_epi16(src16, coeff16);
            t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum = _mm_add_epi32(accum, t);
        }

        // Shift right for fixed point implementation.
        accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits);

        // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
        accum = _mm_packs_epi32(accum, zero);
        // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
        accum = _mm_packus_epi16(accum, zero);

        // Store the pixel value of 32 bits.
        *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
        out_row += 4;
    }
}

// Convolves horizontally along four rows. The row data is given in
// |src_data| and continues for the num_values() of the filter.
// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
// refer to that function for detailed comments.
void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4],
                                    const SkConvolutionFilter1D& filter,
                                    unsigned char* out_row[4]) {
    int num_values = filter.numValues();

    int filter_offset, filter_length;
    __m128i zero = _mm_setzero_si128();
    __m128i mask[4];
    // |mask| will be used to decimate all extra filter coefficients that are
    // loaded by SIMD when |filter_length| is not divisible by 4.
    // mask[0] is not used in following algorithm.
    mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
    mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
    mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);

    // Output one pixel each iteration, calculating all channels (RGBA) together.
    for (int out_x = 0; out_x < num_values; out_x++) {
        const SkConvolutionFilter1D::ConvolutionFixed* filter_values =
            filter.FilterForValue(out_x, &filter_offset, &filter_length);

        // four pixels in a column per iteration.
        __m128i accum0 = _mm_setzero_si128();
        __m128i accum1 = _mm_setzero_si128();
        __m128i accum2 = _mm_setzero_si128();
        __m128i accum3 = _mm_setzero_si128();
        int start = (filter_offset<<2);
        // We will load and accumulate with four coefficients per iteration.
        for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
            __m128i coeff, coeff16lo, coeff16hi;
            // [16] xx xx xx xx c3 c2 c1 c0
            coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
            // [16] xx xx xx xx c1 c1 c0 c0
            coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
            // [16] c1 c1 c1 c1 c0 c0 c0 c0
            coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
            // [16] xx xx xx xx c3 c3 c2 c2
            coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
            // [16] c3 c3 c3 c3 c2 c2 c2 c2
            coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);

            __m128i src8, src16, mul_hi, mul_lo, t;

#define ITERATION(src, accum)                                                \
            src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src));   \
            src16 = _mm_unpacklo_epi8(src8, zero);                           \
            mul_hi = _mm_mulhi_epi16(src16, coeff16lo);                      \
            mul_lo = _mm_mullo_epi16(src16, coeff16lo);                      \
            t = _mm_unpacklo_epi16(mul_lo, mul_hi);                          \
            accum = _mm_add_epi32(accum, t);                                 \
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);                          \
            accum = _mm_add_epi32(accum, t);                                 \
            src16 = _mm_unpackhi_epi8(src8, zero);                           \
            mul_hi = _mm_mulhi_epi16(src16, coeff16hi);                      \
            mul_lo = _mm_mullo_epi16(src16, coeff16hi);                      \
            t = _mm_unpacklo_epi16(mul_lo, mul_hi);                          \
            accum = _mm_add_epi32(accum, t);                                 \
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);                          \
            accum = _mm_add_epi32(accum, t)

            ITERATION(src_data[0] + start, accum0);
            ITERATION(src_data[1] + start, accum1);
            ITERATION(src_data[2] + start, accum2);
            ITERATION(src_data[3] + start, accum3);

            start += 16;
            filter_values += 4;
        }

        int r = filter_length & 3;
        if (r) {
            // Note: filter_values must be padded to align_up(filter_offset, 8);
            __m128i coeff;
            coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
            // Mask out extra filter taps.
            coeff = _mm_and_si128(coeff, mask[r]);

            __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
            /* c1 c1 c1 c1 c0 c0 c0 c0 */
            coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
            __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
            coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);

            __m128i src8, src16, mul_hi, mul_lo, t;

            ITERATION(src_data[0] + start, accum0);
            ITERATION(src_data[1] + start, accum1);
            ITERATION(src_data[2] + start, accum2);
            ITERATION(src_data[3] + start, accum3);
        }

        accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
        accum0 = _mm_packs_epi32(accum0, zero);
        accum0 = _mm_packus_epi16(accum0, zero);
        accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
        accum1 = _mm_packs_epi32(accum1, zero);
        accum1 = _mm_packus_epi16(accum1, zero);
        accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
        accum2 = _mm_packs_epi32(accum2, zero);
        accum2 = _mm_packus_epi16(accum2, zero);
        accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);
        accum3 = _mm_packs_epi32(accum3, zero);
        accum3 = _mm_packus_epi16(accum3, zero);

        *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
        *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
        *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
        *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);

        out_row[0] += 4;
        out_row[1] += 4;
        out_row[2] += 4;
        out_row[3] += 4;
    }
}

// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |source_data_rows| array, with each row
// being |pixel_width| wide.
//
// The output must have room for |pixel_width * 4| bytes.
template<bool has_alpha>
void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values,
                             int filter_length,
                             unsigned char* const* source_data_rows,
                             int pixel_width,
                             unsigned char* out_row) {
    int width = pixel_width & ~3;

    __m128i zero = _mm_setzero_si128();
    __m128i accum0, accum1, accum2, accum3, coeff16;
    const __m128i* src;
    // Output four pixels per iteration (16 bytes).
    for (int out_x = 0; out_x < width; out_x += 4) {

        // Accumulated result for each pixel. 32 bits per RGBA channel.
        accum0 = _mm_setzero_si128();
        accum1 = _mm_setzero_si128();
        accum2 = _mm_setzero_si128();
        accum3 = _mm_setzero_si128();

        // Convolve with one filter coefficient per iteration.
        for (int filter_y = 0; filter_y < filter_length; filter_y++) {

            // Duplicate the filter coefficient 8 times.
            // [16] cj cj cj cj cj cj cj cj
            coeff16 = _mm_set1_epi16(filter_values[filter_y]);

            // Load four pixels (16 bytes) together.
            // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
            src = reinterpret_cast<const __m128i*>(
                &source_data_rows[filter_y][out_x << 2]);
            __m128i src8 = _mm_loadu_si128(src);

            // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
            // multiply with current coefficient => accumulate the result.
            // [16] a1 b1 g1 r1 a0 b0 g0 r0
            __m128i src16 = _mm_unpacklo_epi8(src8, zero);
            __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
            __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
            // [32] a0 b0 g0 r0
            __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum0 = _mm_add_epi32(accum0, t);
            // [32] a1 b1 g1 r1
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);
            accum1 = _mm_add_epi32(accum1, t);

            // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
            // multiply with current coefficient => accumulate the result.
            // [16] a3 b3 g3 r3 a2 b2 g2 r2
            src16 = _mm_unpackhi_epi8(src8, zero);
            mul_hi = _mm_mulhi_epi16(src16, coeff16);
            mul_lo = _mm_mullo_epi16(src16, coeff16);
            // [32] a2 b2 g2 r2
            t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum2 = _mm_add_epi32(accum2, t);
            // [32] a3 b3 g3 r3
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);
            accum3 = _mm_add_epi32(accum3, t);
        }

        // Shift right for fixed point implementation.
        accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
        accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
        accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
        accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits);

        // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
        // [16] a1 b1 g1 r1 a0 b0 g0 r0
        accum0 = _mm_packs_epi32(accum0, accum1);
        // [16] a3 b3 g3 r3 a2 b2 g2 r2
        accum2 = _mm_packs_epi32(accum2, accum3);

        // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
        // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
        accum0 = _mm_packus_epi16(accum0, accum2);

        if (has_alpha) {
            // Compute the max(ri, gi, bi) for each pixel.
            // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
            __m128i a = _mm_srli_epi32(accum0, 8);
            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
            __m128i b = _mm_max_epu8(a, accum0);  // Max of r and g.
            // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
            a = _mm_srli_epi32(accum0, 16);
            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
            b = _mm_max_epu8(a, b);  // Max of r and g and b.
            // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
            b = _mm_slli_epi32(b, 24);

            // Make sure the value of alpha channel is always larger than maximum
            // value of color channels.
            accum0 = _mm_max_epu8(b, accum0);
        } else {
            // Set value of alpha channels to 0xFF.
            __m128i mask = _mm_set1_epi32(0xff000000);
            accum0 = _mm_or_si128(accum0, mask);
        }

        // Store the convolution result (16 bytes) and advance the pixel pointers.
        _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
        out_row += 16;
    }

    // When the width of the output is not divisible by 4, We need to save one
    // pixel (4 bytes) each time. And also the fourth pixel is always absent.
    if (pixel_width & 3) {
        accum0 = _mm_setzero_si128();
        accum1 = _mm_setzero_si128();
        accum2 = _mm_setzero_si128();
        for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
            coeff16 = _mm_set1_epi16(filter_values[filter_y]);
            // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
            src = reinterpret_cast<const __m128i*>(
                &source_data_rows[filter_y][width<<2]);
            __m128i src8 = _mm_loadu_si128(src);
            // [16] a1 b1 g1 r1 a0 b0 g0 r0
            __m128i src16 = _mm_unpacklo_epi8(src8, zero);
            __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
            __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
            // [32] a0 b0 g0 r0
            __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum0 = _mm_add_epi32(accum0, t);
            // [32] a1 b1 g1 r1
            t = _mm_unpackhi_epi16(mul_lo, mul_hi);
            accum1 = _mm_add_epi32(accum1, t);
            // [16] a3 b3 g3 r3 a2 b2 g2 r2
            src16 = _mm_unpackhi_epi8(src8, zero);
            mul_hi = _mm_mulhi_epi16(src16, coeff16);
            mul_lo = _mm_mullo_epi16(src16, coeff16);
            // [32] a2 b2 g2 r2
            t = _mm_unpacklo_epi16(mul_lo, mul_hi);
            accum2 = _mm_add_epi32(accum2, t);
        }

        accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits);
        accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits);
        accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits);
        // [16] a1 b1 g1 r1 a0 b0 g0 r0
        accum0 = _mm_packs_epi32(accum0, accum1);
        // [16] a3 b3 g3 r3 a2 b2 g2 r2
        accum2 = _mm_packs_epi32(accum2, zero);
        // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
        accum0 = _mm_packus_epi16(accum0, accum2);
        if (has_alpha) {
            // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
            __m128i a = _mm_srli_epi32(accum0, 8);
            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
            __m128i b = _mm_max_epu8(a, accum0);  // Max of r and g.
            // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
            a = _mm_srli_epi32(accum0, 16);
            // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
            b = _mm_max_epu8(a, b);  // Max of r and g and b.
            // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
            b = _mm_slli_epi32(b, 24);
            accum0 = _mm_max_epu8(b, accum0);
        } else {
            __m128i mask = _mm_set1_epi32(0xff000000);
            accum0 = _mm_or_si128(accum0, mask);
        }

        for (int out_x = width; out_x < pixel_width; out_x++) {
            *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
            accum0 = _mm_srli_si128(accum0, 4);
            out_row += 4;
        }
    }
}

void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values,
                             int filter_length,
                             unsigned char* const* source_data_rows,
                             int pixel_width,
                             unsigned char* out_row,
                             bool has_alpha) {
    if (has_alpha) {
        convolveVertically_SSE2<true>(filter_values,
                                      filter_length,
                                      source_data_rows,
                                      pixel_width,
                                      out_row);
    } else {
        convolveVertically_SSE2<false>(filter_values,
                                       filter_length,
                                       source_data_rows,
                                       pixel_width,
                                       out_row);
    }
}

void applySIMDPadding_SSE2(SkConvolutionFilter1D *filter) {
    // Padding |paddingCount| of more dummy coefficients after the coefficients
    // of last filter to prevent SIMD instructions which load 8 or 16 bytes
    // together to access invalid memory areas. We are not trying to align the
    // coefficients right now due to the opaqueness of <vector> implementation.
    // This has to be done after all |AddFilter| calls.
    for (int i = 0; i < 8; ++i) {
        filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
    }
}