aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/opts/Sk4x_sse.h
blob: ab6876dfd7c812d1fb56f5eb5b9585558b917b5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// It is important _not_ to put header guards here.
// This file will be intentionally included three times.

// Useful reading:
//   https://software.intel.com/sites/landingpage/IntrinsicsGuide/

#include "SkTypes.h"  // Keep this before any #ifdef for skbug.com/3362

#if defined(SK4X_PREAMBLE)
    // Code in this file may assume SSE and SSE2.
    #include <emmintrin.h>

    // It must check for later instruction sets.
    #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
        #include <immintrin.h>
    #endif

    // A little bit of template metaprogramming to map
    // float to __m128 and int32_t to __m128i.
    template <typename T> struct SkScalarToSIMD;
    template <> struct SkScalarToSIMD<float>   { typedef __m128  Type; };
    template <> struct SkScalarToSIMD<int32_t> { typedef __m128i Type; };

    // These are all free, zero instructions.
    // MSVC insists we use _mm_castA_B(a) instead of (B)a.
    static inline __m128  as_4f(__m128i v) { return _mm_castsi128_ps(v); }
    static inline __m128  as_4f(__m128  v) { return                  v ; }
    static inline __m128i as_4i(__m128i v) { return                  v ; }
    static inline __m128i as_4i(__m128  v) { return _mm_castps_si128(v); }

#elif defined(SK4X_PRIVATE)
    // It'd be slightly faster to call _mm_cmpeq_epi32() on an unintialized register and itself,
    // but that has caused hard to debug issues when compilers recognize dealing with uninitialized
    // memory as undefined behavior that can be optimized away.
    static __m128i True()  { return _mm_set1_epi8(~0); }

    // Leaving these implicit makes the rest of the code below a bit less noisy to read.
    Sk4x(__m128i);
    Sk4x(__m128);

    Sk4x andNot(const Sk4x&) const;

    typename SkScalarToSIMD<T>::Type fVec;

#else//Method definitions.

// Helps to get these in before anything else.
template <> inline Sk4f::Sk4x(__m128i v) : fVec(as_4f(v)) {}
template <> inline Sk4f::Sk4x(__m128  v) : fVec(      v ) {}
template <> inline Sk4i::Sk4x(__m128i v) : fVec(      v ) {}
template <> inline Sk4i::Sk4x(__m128  v) : fVec(as_4i(v)) {}

// Next, methods whose implementation is the same for Sk4f and Sk4i.
template <typename T> Sk4x<T>::Sk4x() {}
template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; }
template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) {
    fVec = other.fVec;
    return *this;
}

// We pun in these _mm_shuffle_* methods a little to use the fastest / most available methods.
// They're all bit-preserving operations so it shouldn't matter.

template <typename T>
Sk4x<T> Sk4x<T>::zwxy() const { return _mm_shuffle_epi32(as_4i(fVec), _MM_SHUFFLE(1,0,3,2)); }

template <typename T>
Sk4x<T> Sk4x<T>::XYAB(const Sk4x<T>& a, const Sk4x<T>& b) {
    return _mm_movelh_ps(as_4f(a.fVec), as_4f(b.fVec));
}

template <typename T>
Sk4x<T> Sk4x<T>::ZWCD(const Sk4x<T>& a, const Sk4x<T>& b) {
    return _mm_movehl_ps(as_4f(b.fVec), as_4f(a.fVec));
}

// Now we'll write all Sk4f specific methods.  This M() macro will remove some noise.
#define M(...) template <> inline __VA_ARGS__ Sk4f::

M() Sk4x(float v) : fVec(_mm_set1_ps(v)) {}
M() Sk4x(float a, float b, float c, float d) : fVec(_mm_set_ps(d,c,b,a)) {}

M(Sk4f) Load       (const float fs[4]) { return _mm_loadu_ps(fs); }
M(Sk4f) LoadAligned(const float fs[4]) { return _mm_load_ps (fs); }

M(void) store       (float fs[4]) const { _mm_storeu_ps(fs, fVec); }
M(void) storeAligned(float fs[4]) const { _mm_store_ps (fs, fVec); }

template <>
M(Sk4i) reinterpret<Sk4i>() const { return as_4i(fVec); }

template <>
M(Sk4i) cast<Sk4i>() const { return _mm_cvtps_epi32(fVec); }

// We're going to try a little experiment here and skip allTrue(), anyTrue(), and bit-manipulators
// for Sk4f.  Code that calls them probably does so accidentally.
// Ask mtklein to fill these in if you really need them.

M(Sk4f) add     (const Sk4f& o) const { return _mm_add_ps(fVec, o.fVec); }
M(Sk4f) subtract(const Sk4f& o) const { return _mm_sub_ps(fVec, o.fVec); }
M(Sk4f) multiply(const Sk4f& o) const { return _mm_mul_ps(fVec, o.fVec); }
M(Sk4f) divide  (const Sk4f& o) const { return _mm_div_ps(fVec, o.fVec); }

M(Sk4f) rsqrt() const { return _mm_rsqrt_ps(fVec); }
M(Sk4f)  sqrt() const { return _mm_sqrt_ps( fVec); }

M(Sk4i) equal           (const Sk4f& o) const { return _mm_cmpeq_ps (fVec, o.fVec); }
M(Sk4i) notEqual        (const Sk4f& o) const { return _mm_cmpneq_ps(fVec, o.fVec); }
M(Sk4i) lessThan        (const Sk4f& o) const { return _mm_cmplt_ps (fVec, o.fVec); }
M(Sk4i) greaterThan     (const Sk4f& o) const { return _mm_cmpgt_ps (fVec, o.fVec); }
M(Sk4i) lessThanEqual   (const Sk4f& o) const { return _mm_cmple_ps (fVec, o.fVec); }
M(Sk4i) greaterThanEqual(const Sk4f& o) const { return _mm_cmpge_ps (fVec, o.fVec); }

M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return _mm_min_ps(a.fVec, b.fVec); }
M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return _mm_max_ps(a.fVec, b.fVec); }

// Now we'll write all the Sk4i specific methods.  Same deal for M().
#undef M
#define M(...) template <> inline __VA_ARGS__ Sk4i::

M() Sk4x(int32_t v) : fVec(_mm_set1_epi32(v)) {}
M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) : fVec(_mm_set_epi32(d,c,b,a)) {}

M(Sk4i) Load       (const int32_t is[4]) { return _mm_loadu_si128((const __m128i*)is); }
M(Sk4i) LoadAligned(const int32_t is[4]) { return _mm_load_si128 ((const __m128i*)is); }

M(void) store       (int32_t is[4]) const { _mm_storeu_si128((__m128i*)is, fVec); }
M(void) storeAligned(int32_t is[4]) const { _mm_store_si128 ((__m128i*)is, fVec); }

template <>
M(Sk4f) reinterpret<Sk4f>() const { return as_4f(fVec); }

template <>
M(Sk4f) cast<Sk4f>() const { return _mm_cvtepi32_ps(fVec); }

M(bool) allTrue() const { return 0xf == _mm_movemask_ps(as_4f(fVec)); }
M(bool) anyTrue() const { return 0x0 != _mm_movemask_ps(as_4f(fVec)); }

M(Sk4i) bitNot() const { return _mm_xor_si128(fVec, True()); }
M(Sk4i) bitAnd(const Sk4i& o) const { return _mm_and_si128(fVec, o.fVec); }
M(Sk4i) bitOr (const Sk4i& o) const { return _mm_or_si128 (fVec, o.fVec); }

M(Sk4i) equal           (const Sk4i& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); }
M(Sk4i) lessThan        (const Sk4i& o) const { return _mm_cmplt_epi32 (fVec, o.fVec); }
M(Sk4i) greaterThan     (const Sk4i& o) const { return _mm_cmpgt_epi32 (fVec, o.fVec); }
M(Sk4i) notEqual        (const Sk4i& o) const { return this->      equal(o).bitNot();  }
M(Sk4i) lessThanEqual   (const Sk4i& o) const { return this->greaterThan(o).bitNot();  }
M(Sk4i) greaterThanEqual(const Sk4i& o) const { return this->   lessThan(o).bitNot();  }

M(Sk4i) add     (const Sk4i& o) const { return _mm_add_epi32(fVec, o.fVec); }
M(Sk4i) subtract(const Sk4i& o) const { return _mm_sub_epi32(fVec, o.fVec); }

// SSE doesn't have integer division.  Let's see how far we can get without Sk4i::divide().

// Sk4i's multiply(), Min(), and Max() all improve significantly with SSE4.1.
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
    M(Sk4i) multiply(const Sk4i& o) const { return _mm_mullo_epi32(fVec, o.fVec); }
    M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return _mm_min_epi32(a.fVec, b.fVec); }
    M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return _mm_max_epi32(a.fVec, b.fVec); }
#else
    M(Sk4i) multiply(const Sk4i& o) const {
        // First 2 32->64 bit multiplies.
        __m128i mul02 = _mm_mul_epu32(fVec, o.fVec),
                mul13 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4));
        // Now recombine the high bits of the two products.
        return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul02, _MM_SHUFFLE(0,0,2,0)),
                                  _mm_shuffle_epi32(mul13, _MM_SHUFFLE(0,0,2,0)));
    }

    M(Sk4i) andNot(const Sk4i& o) const { return _mm_andnot_si128(o.fVec, fVec); }

    M(Sk4i) Min(const Sk4i& a, const Sk4i& b) {
        Sk4i less = a.lessThan(b);
        return a.bitAnd(less).bitOr(b.andNot(less));
    }
    M(Sk4i) Max(const Sk4i& a, const Sk4i& b) {
        Sk4i less = a.lessThan(b);
        return b.bitAnd(less).bitOr(a.andNot(less));
    }
#endif

#undef M

#endif//Method definitions.