aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/jumper/SkJumper_vectors.h
blob: ba14456195ba28732660deb064163a2ca67e0943 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkJumper_vectors_DEFINED
#define SkJumper_vectors_DEFINED

#include "SkJumper.h"
#include "SkJumper_misc.h"

// This file contains vector types that SkJumper_stages.cpp uses to define stages.

// Every function in this file should be marked static and inline using SI (see SkJumper_misc.h).

#if !defined(JUMPER)
    // This path should lead to portable code that can be compiled directly into Skia.
    // (All other paths are compiled offline by Clang into SkJumper_generated.S.)
    #include <math.h>

    using F   = float;
    using I32 =  int32_t;
    using U32 = uint32_t;
    using U16 = uint16_t;
    using U8  = uint8_t;

    SI F   mad(F f, F m, F a)   { return f*m+a; }
    SI F   min(F a, F b)        { return fminf(a,b); }
    SI F   max(F a, F b)        { return fmaxf(a,b); }
    SI F   abs_  (F v)          { return fabsf(v); }
    SI F   floor_(F v)          { return floorf(v); }
    SI F   rcp   (F v)          { return 1.0f / v; }
    SI F   rsqrt (F v)          { return 1.0f / sqrtf(v); }
    SI U32 round (F v, F scale) { return (uint32_t)lrintf(v*scale); }
    SI U16 pack(U32 v)          { return (U16)v; }
    SI U8  pack(U16 v)          { return  (U8)v; }

    SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }

    SI F   gather(const float*    p, U32 ix) { return p[ix]; }
    SI U32 gather(const uint32_t* p, U32 ix) { return p[ix]; }

    SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
        *r = ptr[0];
        *g = ptr[1];
        *b = ptr[2];
        *a = ptr[3];
    }
    SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
        ptr[0] = r;
        ptr[1] = g;
        ptr[2] = b;
        ptr[3] = a;
    }

    SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
        *r = ptr[0];
        *g = ptr[1];
        *b = ptr[2];
        *a = ptr[3];
    }
    SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
        ptr[0] = r;
        ptr[1] = g;
        ptr[2] = b;
        ptr[3] = a;
    }

    SI F from_half(U16 h) {
        if ((int16_t)h < 0x0400) { h = 0; }   // Flush denorm and negative to zero.
        return bit_cast<F>(h << 13)           // Line up the mantissa,
             * bit_cast<F>(U32(0x77800000));  // then fix up the exponent.
    }
    SI U16 to_half(F f) {
        return bit_cast<U32>(f * bit_cast<F>(U32(0x07800000_i)))  // Fix up the exponent,
            >> 13;                                                // then line up the mantissa.
    }

#elif defined(__aarch64__)
    #include <arm_neon.h>

    // Since we know we're using Clang, we can use its vector extensions.
    using F   = float    __attribute__((ext_vector_type(4)));
    using I32 =  int32_t __attribute__((ext_vector_type(4)));
    using U32 = uint32_t __attribute__((ext_vector_type(4)));
    using U16 = uint16_t __attribute__((ext_vector_type(4)));
    using U8  = uint8_t  __attribute__((ext_vector_type(4)));

    // We polyfill a few routines that Clang doesn't build into ext_vector_types.
    SI F   mad(F f, F m, F a)                    { return vfmaq_f32(a,f,m);        }
    SI F   min(F a, F b)                         { return vminq_f32(a,b);          }
    SI F   max(F a, F b)                         { return vmaxq_f32(a,b);          }
    SI F   abs_  (F v)                           { return vabsq_f32(v);            }
    SI F   floor_(F v)                           { return vrndmq_f32(v);           }
    SI F   rcp   (F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e  ) * e; }
    SI F   rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
    SI U32 round (F v, F scale)                  { return vcvtnq_u32_f32(v*scale); }
    SI U16 pack(U32 v)                           { return __builtin_convertvector(v, U16); }
    SI U8  pack(U16 v)                           { return __builtin_convertvector(v,  U8); }

    SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }

    SI F   gather(const float*    p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; }
    SI U32 gather(const uint32_t* p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; }

    SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
        uint16x4x4_t rgba = vld4_u16(ptr);
        *r = rgba.val[0];
        *g = rgba.val[1];
        *b = rgba.val[2];
        *a = rgba.val[3];
    }
    SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
        vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
    }

    SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
        float32x4x4_t rgba = vld4q_f32(ptr);
        *r = rgba.val[0];
        *g = rgba.val[1];
        *b = rgba.val[2];
        *a = rgba.val[3];
    }
    SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
        vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
    }

    SI F from_half(U16 h) { return vcvt_f32_f16(h); }
    SI U16 to_half(F   f) { return vcvt_f16_f32(f); }

#elif defined(__arm__)
    #if defined(__thumb2__) || !defined(__ARM_ARCH_7A__) || !defined(__ARM_VFPV4__)
        #error On ARMv7, compile with -march=armv7-a -mfpu=neon-vfp4, without -mthumb.
    #endif
    #include <arm_neon.h>

    // We can pass {s0-s15} as arguments under AAPCS-VFP.  We'll slice that as 8 d-registers.
    using F   = float    __attribute__((ext_vector_type(2)));
    using I32 =  int32_t __attribute__((ext_vector_type(2)));
    using U32 = uint32_t __attribute__((ext_vector_type(2)));
    using U16 = uint16_t __attribute__((ext_vector_type(2)));
    using U8  = uint8_t  __attribute__((ext_vector_type(2)));

    SI F   mad(F f, F m, F a)                  { return vfma_f32(a,f,m);        }
    SI F   min(F a, F b)                       { return vmin_f32(a,b);          }
    SI F   max(F a, F b)                       { return vmax_f32(a,b);          }
    SI F   abs_ (F v)                          { return vabs_f32(v);            }
    SI F   rcp  (F v) { auto e = vrecpe_f32 (v); return vrecps_f32 (v,e  ) * e; }
    SI F   rsqrt(F v) { auto e = vrsqrte_f32(v); return vrsqrts_f32(v,e*e) * e; }
    SI U32 round(F v, F scale)                 { return vcvt_u32_f32(mad(v,scale,0.5f)); }
    SI U16 pack(U32 v)                         { return __builtin_convertvector(v, U16); }
    SI U8  pack(U16 v)                         { return __builtin_convertvector(v,  U8); }

    SI F if_then_else(I32 c, F t, F e) { return vbsl_f32((U32)c,t,e); }

    SI F floor_(F v) {
        F roundtrip = vcvt_f32_s32(vcvt_s32_f32(v));
        return roundtrip - if_then_else(roundtrip > v, 1.0_f, 0);
    }

    SI F   gather(const float*    p, U32 ix) { return {p[ix[0]], p[ix[1]]}; }
    SI U32 gather(const uint32_t* p, U32 ix) { return {p[ix[0]], p[ix[1]]}; }

    SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
        uint16x4x4_t rgba;
        rgba = vld4_lane_u16(ptr + 0, rgba, 0);
        rgba = vld4_lane_u16(ptr + 4, rgba, 1);
        *r = unaligned_load<U16>(rgba.val+0);
        *g = unaligned_load<U16>(rgba.val+1);
        *b = unaligned_load<U16>(rgba.val+2);
        *a = unaligned_load<U16>(rgba.val+3);
    }
    SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
        uint16x4x4_t rgba = {{
            widen_cast<uint16x4_t>(r),
            widen_cast<uint16x4_t>(g),
            widen_cast<uint16x4_t>(b),
            widen_cast<uint16x4_t>(a),
        }};
        vst4_lane_u16(ptr + 0, rgba, 0);
        vst4_lane_u16(ptr + 4, rgba, 1);
    }

    SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
        float32x2x4_t rgba = vld4_f32(ptr);
        *r = rgba.val[0];
        *g = rgba.val[1];
        *b = rgba.val[2];
        *a = rgba.val[3];
    }
    SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
        vst4_f32(ptr, (float32x2x4_t{{r,g,b,a}}));
    }

    SI F from_half(U16 h) {
        auto v = widen_cast<uint16x4_t>(h);
        return vget_low_f32(vcvt_f32_f16(v));
    }
    SI U16 to_half(F f) {
        auto v = widen_cast<float32x4_t>(f);
        uint16x4_t h = vcvt_f16_f32(v);
        return unaligned_load<U16>(&h);
    }

#elif defined(__AVX__)
    #include <immintrin.h>

    // These are __m256 and __m256i, but friendlier and strongly-typed.
    using F   = float    __attribute__((ext_vector_type(8)));
    using I32 =  int32_t __attribute__((ext_vector_type(8)));
    using U32 = uint32_t __attribute__((ext_vector_type(8)));
    using U16 = uint16_t __attribute__((ext_vector_type(8)));
    using U8  = uint8_t  __attribute__((ext_vector_type(8)));

    SI F mad(F f, F m, F a)  {
    #if defined(__FMA__)
        return _mm256_fmadd_ps(f,m,a);
    #else
        return f*m+a;
    #endif
    }

    SI F   min(F a, F b)        { return _mm256_min_ps(a,b);    }
    SI F   max(F a, F b)        { return _mm256_max_ps(a,b);    }
    SI F   abs_  (F v)          { return _mm256_and_ps(v, 0-v); }
    SI F   floor_(F v)          { return _mm256_floor_ps(v);    }
    SI F   rcp   (F v)          { return _mm256_rcp_ps  (v);    }
    SI F   rsqrt (F v)          { return _mm256_rsqrt_ps(v);    }
    SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }

    SI U16 pack(U32 v) {
        return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
                                _mm256_extractf128_si256(v, 1));
    }
    SI U8 pack(U16 v) {
        auto r = _mm_packus_epi16(v,v);
        return unaligned_load<U8>(&r);
    }

    SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }

    SI F gather(const float* p, U32 ix) {
    #if defined(__AVX2__)
        return _mm256_i32gather_ps(p, ix, 4);
    #else
        return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
                 p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
    #endif
    }
    SI U32 gather(const uint32_t* p, U32 ix) {
    #if defined(__AVX2__)
        return _mm256_i32gather_epi32(p, ix, 4);
    #else
        return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
                 p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
    #endif
    }

    SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
        __m128i _01, _23, _45, _67;
        if (__builtin_expect(tail,0)) {
            auto src = (const double*)ptr;
            _01 = _23 = _45 = _67 = _mm_setzero_si128();
            if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
            if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
            if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
            if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
            if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
            if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
            if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
        } else {
            _01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
            _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
            _45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
            _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
        }

        auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
             _13 = _mm_unpackhi_epi16(_01, _23),  // r1 r3 g1 g3 b1 b3 a1 a3
             _46 = _mm_unpacklo_epi16(_45, _67),
             _57 = _mm_unpackhi_epi16(_45, _67);

        auto rg0123 = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
             ba0123 = _mm_unpackhi_epi16(_02, _13),  // b0 b1 b2 b3 a0 a1 a2 a3
             rg4567 = _mm_unpacklo_epi16(_46, _57),
             ba4567 = _mm_unpackhi_epi16(_46, _57);

        *r = _mm_unpacklo_epi64(rg0123, rg4567);
        *g = _mm_unpackhi_epi64(rg0123, rg4567);
        *b = _mm_unpacklo_epi64(ba0123, ba4567);
        *a = _mm_unpackhi_epi64(ba0123, ba4567);
    }
    SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
        auto rg0123 = _mm_unpacklo_epi16(r, g),  // r0 g0 r1 g1 r2 g2 r3 g3
             rg4567 = _mm_unpackhi_epi16(r, g),  // r4 g4 r5 g5 r6 g6 r7 g7
             ba0123 = _mm_unpacklo_epi16(b, a),
             ba4567 = _mm_unpackhi_epi16(b, a);

        auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
             _23 = _mm_unpackhi_epi32(rg0123, ba0123),
             _45 = _mm_unpacklo_epi32(rg4567, ba4567),
             _67 = _mm_unpackhi_epi32(rg4567, ba4567);

        if (__builtin_expect(tail,0)) {
            auto dst = (double*)ptr;
            if (tail > 0) { _mm_storel_pd(dst+0, _01); }
            if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
            if (tail > 2) { _mm_storel_pd(dst+2, _23); }
            if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
            if (tail > 4) { _mm_storel_pd(dst+4, _45); }
            if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
            if (tail > 6) { _mm_storel_pd(dst+6, _67); }
        } else {
            _mm_storeu_si128((__m128i*)ptr + 0, _01);
            _mm_storeu_si128((__m128i*)ptr + 1, _23);
            _mm_storeu_si128((__m128i*)ptr + 2, _45);
            _mm_storeu_si128((__m128i*)ptr + 3, _67);
        }
    }

    SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
        F _04, _15, _26, _37;

        switch (tail) {
            case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
            case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
            case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
            case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
            case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0);
            case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0);
            case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0);
            case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
        }

        F rg0145 = _mm256_unpacklo_ps(_04,_15),  // r0 r1 g0 g1 | r4 r5 g4 g5
          ba0145 = _mm256_unpackhi_ps(_04,_15),
          rg2367 = _mm256_unpacklo_ps(_26,_37),
          ba2367 = _mm256_unpackhi_ps(_26,_37);

        *r = _mm256_unpacklo_pd(rg0145, rg2367);
        *g = _mm256_unpackhi_pd(rg0145, rg2367);
        *b = _mm256_unpacklo_pd(ba0145, ba2367);
        *a = _mm256_unpackhi_pd(ba0145, ba2367);
    }
    SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
        F rg0145 = _mm256_unpacklo_ps(r, g),  // r0 g0 r1 g1 | r4 g4 r5 g5
          rg2367 = _mm256_unpackhi_ps(r, g),  // r2 ...      | r6 ...
          ba0145 = _mm256_unpacklo_ps(b, a),  // b0 a0 b1 a1 | b4 a4 b5 a5
          ba2367 = _mm256_unpackhi_ps(b, a);  // b2 ...      | b6 ...

        F _04 = _mm256_unpacklo_pd(rg0145, ba0145),  // r0 g0 b0 a0 | r4 g4 b4 a4
          _15 = _mm256_unpackhi_pd(rg0145, ba0145),  // r1 ...      | r5 ...
          _26 = _mm256_unpacklo_pd(rg2367, ba2367),  // r2 ...      | r6 ...
          _37 = _mm256_unpackhi_pd(rg2367, ba2367);  // r3 ...      | r7 ...

        if (__builtin_expect(tail, 0)) {
            if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
            if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
            if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
            if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
            if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
            if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
            if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
        } else {
            F _01 = _mm256_permute2f128_ps(_04, _15, 32),  // 32 == 0010 0000 == lo, lo
              _23 = _mm256_permute2f128_ps(_26, _37, 32),
              _45 = _mm256_permute2f128_ps(_04, _15, 49),  // 49 == 0011 0001 == hi, hi
              _67 = _mm256_permute2f128_ps(_26, _37, 49);
            _mm256_storeu_ps(ptr+ 0, _01);
            _mm256_storeu_ps(ptr+ 8, _23);
            _mm256_storeu_ps(ptr+16, _45);
            _mm256_storeu_ps(ptr+24, _67);
        }
    }

    SI F from_half(U16 h) {
    #if defined(__AVX2__)
        return _mm256_cvtph_ps(h);
    #else
        // This technique would slow down ~10x for denorm inputs, so we flush them to zero.
        // With a signed comparison this conveniently also flushes negative half floats to zero.
        h = _mm_andnot_si128(_mm_cmplt_epi16(h, _mm_set1_epi32(0x04000400_i)), h);

        U32 w = _mm256_setr_m128i(_mm_unpacklo_epi16(h, _mm_setzero_si128()),
                                  _mm_unpackhi_epi16(h, _mm_setzero_si128()));
        return bit_cast<F>(w << 13)             // Line up the mantissa,
             * bit_cast<F>(U32(0x77800000_i));  // then fix up the exponent.
    #endif
    }
    SI U16 to_half(F f) {
    #if defined(__AVX2__)
        return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
    #else
        return pack(bit_cast<U32>(f * bit_cast<F>(U32(0x07800000_i)))  // Fix up the exponent,
                    >> 13);                                            // then line up the mantissa.
    #endif
    }

#elif defined(__SSE2__)
    #include <immintrin.h>

    using F   = float    __attribute__((ext_vector_type(4)));
    using I32 =  int32_t __attribute__((ext_vector_type(4)));
    using U32 = uint32_t __attribute__((ext_vector_type(4)));
    using U16 = uint16_t __attribute__((ext_vector_type(4)));
    using U8  = uint8_t  __attribute__((ext_vector_type(4)));

    SI F   mad(F f, F m, F a)  { return f*m+a;              }
    SI F   min(F a, F b)       { return _mm_min_ps(a,b);    }
    SI F   max(F a, F b)       { return _mm_max_ps(a,b);    }
    SI F   abs_(F v)           { return _mm_and_ps(v, 0-v); }
    SI F   rcp  (F v)          { return _mm_rcp_ps  (v);    }
    SI F   rsqrt(F v)          { return _mm_rsqrt_ps(v);    }
    SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }

    SI U16 pack(U32 v) {
    #if defined(__SSE4_1__)
        auto p = _mm_packus_epi32(v,v);
    #else
        // Sign extend so that _mm_packs_epi32() does the pack we want.
        auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
        p = _mm_packs_epi32(p,p);
    #endif
        return unaligned_load<U16>(&p);  // We have two copies.  Return (the lower) one.
    }
    SI U8 pack(U16 v) {
        auto r = widen_cast<__m128i>(v);
        r = _mm_packus_epi16(r,r);
        return unaligned_load<U8>(&r);
    }

    SI F if_then_else(I32 c, F t, F e) {
        return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
    }

    SI F floor_(F v) {
    #if defined(__SSE4_1__)
        return _mm_floor_ps(v);
    #else
        F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
        return roundtrip - if_then_else(roundtrip > v, 1.0_f, 0);
    #endif
    }

    SI F   gather(const float*    p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; }
    SI U32 gather(const uint32_t* p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; }

    SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
        auto _01 = _mm_loadu_si128(((__m128i*)ptr) + 0),
             _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);

        auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
             _13 = _mm_unpackhi_epi16(_01, _23);  // r1 r3 g1 g3 b1 b3 a1 a3

        auto rg = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
             ba = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 a0 a1 a2 a3

        *r = unaligned_load<U16>((uint16_t*)&rg + 0);
        *g = unaligned_load<U16>((uint16_t*)&rg + 4);
        *b = unaligned_load<U16>((uint16_t*)&ba + 0);
        *a = unaligned_load<U16>((uint16_t*)&ba + 4);
    }
    SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
        auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
             ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
        _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
        _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
    }

    SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
        auto _0 = _mm_loadu_ps(ptr+ 0),
             _1 = _mm_loadu_ps(ptr+ 4),
             _2 = _mm_loadu_ps(ptr+ 8),
             _3 = _mm_loadu_ps(ptr+12);
        _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
        *r = _0;
        *g = _1;
        *b = _2;
        *a = _3;
    }
    SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
        _MM_TRANSPOSE4_PS(r,g,b,a);
        _mm_storeu_ps(ptr+ 0, r);
        _mm_storeu_ps(ptr+ 4, g);
        _mm_storeu_ps(ptr+ 8, b);
        _mm_storeu_ps(ptr+12, a);
    }

    SI F from_half(U16 h) {
        auto v = widen_cast<__m128i>(h);

        // Same deal as AVX: flush denorms and negatives to zero.
        v = _mm_andnot_si128(_mm_cmplt_epi16(v, _mm_set1_epi32(0x04000400_i)), v);

        U32 w = _mm_unpacklo_epi16(v, _mm_setzero_si128());
        return bit_cast<F>(w << 13)             // Line up the mantissa,
             * bit_cast<F>(U32(0x77800000_i));  // then fix up the exponent.
    }
    SI U16 to_half(F f) {
        return pack(bit_cast<U32>(f * bit_cast<F>(U32(0x07800000_i)))  // Fix up the exponent,
                    >> 13);                                            // then line up the mantissa.
    }
#endif

// We need to be a careful with casts.
// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
// These named casts and bit_cast() are always what they seem to be.
#if defined(JUMPER)
    SI F   cast  (U32 v) { return      __builtin_convertvector((I32)v,   F); }
    SI U32 trunc_(F   v) { return (U32)__builtin_convertvector(     v, I32); }
    SI U32 expand(U16 v) { return      __builtin_convertvector(     v, U32); }
    SI U32 expand(U8  v) { return      __builtin_convertvector(     v, U32); }
#else
    SI F   cast  (U32 v) { return   (F)v; }
    SI U32 trunc_(F   v) { return (U32)v; }
    SI U32 expand(U16 v) { return (U32)v; }
    SI U32 expand(U8  v) { return (U32)v; }
#endif

SI U16 bswap(U16 x) {
#if defined(JUMPER) && defined(__SSE2__) && !defined(__AVX__)
    // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
    // when generating code for SSE2 and SSE4.1.  We'll do it manually...
    auto v = widen_cast<__m128i>(x);
    v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
    return unaligned_load<U16>(&v);
#else
    return (x<<8) | (x>>8);
#endif
}

#endif//SkJumper_vectors_DEFINED