aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/jumper/SkJumper_stages_lowp.cpp
blob: 247bdf6a2b79250973fe7bd7646aace5e53b12c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

// This restricted SkJumper backend works on 8-bit per channel pixels stored in
// 16-bit channels.  This is a last attempt to write a performant low-precision
// backend with stage definitions that can be shared by x86 and ARM.

#include "SkJumper.h"
#include "SkJumper_misc.h"

#if defined(__clang__)  // This file is empty when not compiled by Clang.

#if defined(__ARM_NEON)
    #include <arm_neon.h>
    #if defined(__arm__)
        #define ABI __attribute__((pcs("aapcs-vfp")))
    #else
        #define ABI
    #endif
#elif defined(__SSE2__)
    #include <immintrin.h>
    #define ABI
#else
    #define ABI
#endif

#if !defined(JUMPER_IS_OFFLINE)
    #define WRAP(name) sk_##name##_lowp
#elif defined(__AVX2__)
    #define WRAP(name) sk_##name##_hsw_lowp
#elif defined(__SSE4_1__)
    #define WRAP(name) sk_##name##_sse41_lowp
#elif defined(__SSE2__)
    #define WRAP(name) sk_##name##_sse2_lowp
#endif

#if defined(__AVX2__)
    using U8  = uint8_t  __attribute__((ext_vector_type(16)));
    using U16 = uint16_t __attribute__((ext_vector_type(16)));
    using I16 =  int16_t __attribute__((ext_vector_type(16)));
    using I32 =  int32_t __attribute__((ext_vector_type(16)));
    using U32 = uint32_t __attribute__((ext_vector_type(16)));
    using F   = float    __attribute__((ext_vector_type(16)));
#else
    using U8  = uint8_t  __attribute__((ext_vector_type(8)));
    using U16 = uint16_t __attribute__((ext_vector_type(8)));
    using I16 =  int16_t __attribute__((ext_vector_type(8)));
    using I32 =  int32_t __attribute__((ext_vector_type(8)));
    using U32 = uint32_t __attribute__((ext_vector_type(8)));
    using F   = float    __attribute__((ext_vector_type(8)));
#endif

static const size_t N = sizeof(U16) / sizeof(uint16_t);

// We pass program as the second argument so that load_and_inc() will find it in %rsi on x86-64.
using Stage = void (ABI*)(size_t tail, void** program, size_t dx, size_t dy,
                          U16  r, U16  g, U16  b, U16  a,
                          U16 dr, U16 dg, U16 db, U16 da);

MAYBE_MSABI
ABI extern "C" void WRAP(start_pipeline)(const size_t x0,
                                         const size_t y0,
                                         const size_t xlimit,
                                         const size_t ylimit,
                                         void** program) {
    auto start = (Stage)load_and_inc(program);
    for (size_t dy = y0; dy < ylimit; dy++) {
        size_t dx = x0;
        for (; dx + N <= xlimit; dx += N) {
            start(   0,program,dx,dy, 0,0,0,0, 0,0,0,0);
        }
        if (size_t tail = xlimit - dx) {
            start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
        }
    }
}

ABI extern "C" void WRAP(just_return)(size_t,void**,size_t,size_t,
                                      U16,U16,U16,U16, U16,U16,U16,U16) {}

// All stages use the same function call ABI to chain into each other, but there are three types:
//   GG: geometry in, geometry out  -- think, a matrix
//   GP: geometry in, pixels out.   -- think, a memory gather
//   PP: pixels in, pixels out.     -- think, a blend mode
//
// (Some stages ignore their inputs or produce no logical output.  That's perfectly fine.)
//
// These three STAGE_ macros let you define each type of stage,
// and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.

#define STAGE_GG(name, ...)                                                            \
    SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y);      \
    ABI extern "C" void WRAP(name)(size_t tail, void** program, size_t dx, size_t dy,  \
                                   U16  r, U16  g, U16  b, U16  a,                     \
                                   U16 dr, U16 dg, U16 db, U16 da) {                   \
        auto x = join<F>(r,g),                                                         \
             y = join<F>(b,a);                                                         \
        name##_k(Ctx{program}, dx,dy,tail, x,y);                                       \
        split(x, &r,&g);                                                               \
        split(y, &b,&a);                                                               \
        auto next = (Stage)load_and_inc(program);                                      \
        next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da);                                \
    }                                                                                  \
    SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)

#define STAGE_GP(name, ...)                                                            \
    SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y,         \
                     U16&  r, U16&  g, U16&  b, U16&  a,                               \
                     U16& dr, U16& dg, U16& db, U16& da);                              \
    ABI extern "C" void WRAP(name)(size_t tail, void** program, size_t dx, size_t dy,  \
                                   U16  r, U16  g, U16  b, U16  a,                     \
                                   U16 dr, U16 dg, U16 db, U16 da) {                   \
        auto x = join<F>(r,g),                                                         \
             y = join<F>(b,a);                                                         \
        name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da);                 \
        auto next = (Stage)load_and_inc(program);                                      \
        next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da);                                \
    }                                                                                  \
    SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y,         \
                     U16&  r, U16&  g, U16&  b, U16&  a,                               \
                     U16& dr, U16& dg, U16& db, U16& da)

#define STAGE_PP(name, ...)                                                            \
    SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail,                   \
                     U16&  r, U16&  g, U16&  b, U16&  a,                               \
                     U16& dr, U16& dg, U16& db, U16& da);                              \
    ABI extern "C" void WRAP(name)(size_t tail, void** program, size_t dx, size_t dy,  \
                                   U16  r, U16  g, U16  b, U16  a,                     \
                                   U16 dr, U16 dg, U16 db, U16 da) {                   \
        name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da);                      \
        auto next = (Stage)load_and_inc(program);                                      \
        next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da);                                \
    }                                                                                  \
    SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail,                   \
                     U16&  r, U16&  g, U16&  b, U16&  a,                               \
                     U16& dr, U16& dg, U16& db, U16& da)

// ~~~~~~ Commonly used helper functions ~~~~~~ //

SI U16 div255(U16 v) {
#if 0
    return (v+127)/255;  // The ideal rounding divide by 255.
#else
    return (v+255)/256;  // A good approximation of (v+127)/255.
#endif
}

SI U16 inv(U16 v) { return 255-v; }

SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }

SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
SI U16 max(U16 x, U16 y, U16 z) { return max(x, max(y, z)); }
SI U16 min(U16 x, U16 y, U16 z) { return min(x, min(y, z)); }

SI U16 from_float(float f) { return f * 255.0f + 0.5f; }

SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }

template <typename D, typename S>
SI D cast(S src) {
    return __builtin_convertvector(src, D);
}

template <typename D, typename S>
SI void split(S v, D* lo, D* hi) {
    static_assert(2*sizeof(D) == sizeof(S), "");
    memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
    memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
}
template <typename D, typename S>
SI D join(S lo, S hi) {
    static_assert(sizeof(D) == 2*sizeof(S), "");
    D v;
    memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
    memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
    return v;
}

// TODO: do we need platform-specific intrinsics for any of these?
SI F if_then_else(I32 c, F t, F e) {
    return bit_cast<F>( (bit_cast<I32>(t) & c) | (bit_cast<I32>(e) & ~c) );
}
SI F max(F x, F y) { return if_then_else(x < y, y, x); }
SI F min(F x, F y) { return if_then_else(x < y, x, y); }

SI F mad(F f, F m, F a) { return f*m+a; }
SI U32 trunc_(F x) { return (U32)cast<I32>(x); }

// ~~~~~~ Basic / misc. stages ~~~~~~ //

STAGE_GG(seed_shader, const float* iota) {
    x = cast<F>(I32(dx)) + unaligned_load<F>(iota);
    y = cast<F>(I32(dy)) + 0.5f;
}

STAGE_GG(matrix_2x3, const float* m) {
    auto X = mad(x,m[0], mad(y,m[2], m[4])),
         Y = mad(x,m[1], mad(y,m[3], m[5]));
    x = X;
    y = Y;
}

STAGE_PP(uniform_color, const SkJumper_UniformColorCtx* c) {
    r = c->rgba[0];
    g = c->rgba[1];
    b = c->rgba[2];
    a = c->rgba[3];
}
STAGE_PP(black_color, Ctx::None) { r = g = b =   0; a = 255; }
STAGE_PP(white_color, Ctx::None) { r = g = b = 255; a = 255; }

STAGE_PP(set_rgb, const float rgb[3]) {
    r = from_float(rgb[0]);
    g = from_float(rgb[1]);
    b = from_float(rgb[2]);
}

STAGE_PP(premul, Ctx::None) {
    r = div255(r * a);
    g = div255(g * a);
    b = div255(b * a);
}

STAGE_PP(swap_rb, Ctx::None) {
    auto tmp = r;
    r = b;
    b = tmp;
}

STAGE_PP(move_src_dst, Ctx::None) {
    dr = r;
    dg = g;
    db = b;
    da = a;
}

STAGE_PP(move_dst_src, Ctx::None) {
    r = dr;
    g = dg;
    b = db;
    a = da;
}

STAGE_PP(invert, Ctx::None) {
    r = inv(r);
    g = inv(g);
    b = inv(b);
    a = inv(a);
}

// ~~~~~~ Blend modes ~~~~~~ //

// The same logic applied to all 4 channels.
#define BLEND_MODE(name)                                 \
    SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
    STAGE_PP(name, Ctx::None) {                          \
        r = name##_channel(r,dr,a,da);                   \
        g = name##_channel(g,dg,a,da);                   \
        b = name##_channel(b,db,a,da);                   \
        a = name##_channel(a,da,a,da);                   \
    }                                                    \
    SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)

    BLEND_MODE(clear)    { return 0; }
    BLEND_MODE(srcatop)  { return div255( s*da + d*inv(sa) ); }
    BLEND_MODE(dstatop)  { return div255( d*sa + s*inv(da) ); }
    BLEND_MODE(srcin)    { return div255( s*da ); }
    BLEND_MODE(dstin)    { return div255( d*sa ); }
    BLEND_MODE(srcout)   { return div255( s*inv(da) ); }
    BLEND_MODE(dstout)   { return div255( d*inv(sa) ); }
    BLEND_MODE(srcover)  { return s + div255( d*inv(sa) ); }
    BLEND_MODE(dstover)  { return d + div255( s*inv(da) ); }
    BLEND_MODE(modulate) { return div255( s*d ); }
    BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
    BLEND_MODE(plus_)    { return min(s+d, 255); }
    BLEND_MODE(screen)   { return s + d - div255( s*d ); }
    BLEND_MODE(xor_)     { return div255( s*inv(da) + d*inv(sa) ); }
#undef BLEND_MODE

// The same logic applied to color, and srcover for alpha.
#define BLEND_MODE(name)                                 \
    SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
    STAGE_PP(name, Ctx::None) {                          \
        r = name##_channel(r,dr,a,da);                   \
        g = name##_channel(g,dg,a,da);                   \
        b = name##_channel(b,db,a,da);                   \
        a = a + div255( da*inv(a) );                     \
    }                                                    \
    SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)

    BLEND_MODE(darken)     { return s + d -   div255( max(s*da, d*sa) ); }
    BLEND_MODE(lighten)    { return s + d -   div255( min(s*da, d*sa) ); }
    BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
    BLEND_MODE(exclusion)  { return s + d - 2*div255( s*d ); }

    BLEND_MODE(hardlight) {
        return div255( s*inv(da) + d*inv(sa) +
                       if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
    }
    BLEND_MODE(overlay) {
        return div255( s*inv(da) + d*inv(sa) +
                       if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
    }
#undef BLEND_MODE

// ~~~~~~ Helpers for interacting with memory ~~~~~~ //

template <typename T>
SI T* ptr_at_xy(const SkJumper_MemoryCtx* ctx, size_t dx, size_t dy) {
    return (T*)ctx->pixels + dy*ctx->stride + dx;
}

template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkJumper_GatherCtx* ctx, F x, F y) {
    auto clamp = [](F v, F limit) {
        limit = bit_cast<F>( bit_cast<U32>(limit) - 1 );  // Exclusive -> inclusive.
        return min(max(0, v), limit);
    };
    x = clamp(x, ctx->width);
    y = clamp(y, ctx->height);

    *ptr = (const T*)ctx->pixels;
    return trunc_(y)*ctx->stride + trunc_(x);
}

template <typename V, typename T>
SI V load(const T* ptr, size_t tail) {
    V v = 0;
    switch (tail & (N-1)) {
        case  0: memcpy(&v, ptr, sizeof(v)); break;
    #if defined(__AVX2__)
        case 15: v[14] = ptr[14];
        case 14: v[13] = ptr[13];
        case 13: v[12] = ptr[12];
        case 12: memcpy(&v, ptr, 12*sizeof(T)); break;
        case 11: v[10] = ptr[10];
        case 10: v[ 9] = ptr[ 9];
        case  9: v[ 8] = ptr[ 8];
        case  8: memcpy(&v, ptr,  8*sizeof(T)); break;
    #endif
        case  7: v[ 6] = ptr[ 6];
        case  6: v[ 5] = ptr[ 5];
        case  5: v[ 4] = ptr[ 4];
        case  4: memcpy(&v, ptr,  4*sizeof(T)); break;
        case  3: v[ 2] = ptr[ 2];
        case  2: memcpy(&v, ptr,  2*sizeof(T)); break;
        case  1: v[ 0] = ptr[ 0];
    }
    return v;
}
template <typename V, typename T>
SI void store(T* ptr, size_t tail, V v) {
    switch (tail & (N-1)) {
        case  0: memcpy(ptr, &v, sizeof(v)); break;
    #if defined(__AVX2__)
        case 15: ptr[14] = v[14];
        case 14: ptr[13] = v[13];
        case 13: ptr[12] = v[12];
        case 12: memcpy(ptr, &v, 12*sizeof(T)); break;
        case 11: ptr[10] = v[10];
        case 10: ptr[ 9] = v[ 9];
        case  9: ptr[ 8] = v[ 8];
        case  8: memcpy(ptr, &v,  8*sizeof(T)); break;
    #endif
        case  7: ptr[ 6] = v[ 6];
        case  6: ptr[ 5] = v[ 5];
        case  5: ptr[ 4] = v[ 4];
        case  4: memcpy(ptr, &v,  4*sizeof(T)); break;
        case  3: ptr[ 2] = v[ 2];
        case  2: memcpy(ptr, &v,  2*sizeof(T)); break;
        case  1: ptr[ 0] = v[ 0];
    }
}

template <typename V, typename T>
SI V gather(const T* ptr, U32 ix) {
#if defined(__AVX2__)
    return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
              ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
              ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
              ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
#else
    return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
              ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
#endif
}
// TODO: AVX2 gather instructions where possible


// ~~~~~~ 32-bit memory loads and stores ~~~~~~ //

SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
#if 1 && defined(__AVX2__)
    // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
    __m256i _01,_23;
    split(rgba, &_01, &_23);
    __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
            _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
    rgba = join<U32>(_02, _13);

    auto cast_U16 = [](U32 v) -> U16 {
        __m256i _02,_13;
        split(v, &_02,&_13);
        return _mm256_packus_epi32(_02,_13);
    };
#else
    auto cast_U16 = [](U32 v) -> U16 {
        return cast<U16>(v);
    };
#endif
    *r = cast_U16(rgba & 65535) & 255;
    *g = cast_U16(rgba & 65535) >>  8;
    *b = cast_U16(rgba >>   16) & 255;
    *a = cast_U16(rgba >>   16) >>  8;
}

SI void load_8888(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
#if 1 && defined(__ARM_NEON)
    uint8x8x4_t rgba;
    switch (tail & (N-1)) {
        case 0: rgba = vld4_u8     ((const uint8_t*)(ptr+0)         ); break;
        case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6);
        case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5);
        case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4);
        case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3);
        case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2);
        case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1);
        case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0);
    }
    *r = cast<U16>(rgba.val[0]);
    *g = cast<U16>(rgba.val[1]);
    *b = cast<U16>(rgba.val[2]);
    *a = cast<U16>(rgba.val[3]);
#else
    from_8888(load<U32>(ptr, tail), r,g,b,a);
#endif
}
SI void store_8888(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
#if 1 && defined(__ARM_NEON)
    uint8x8x4_t rgba = {{
        cast<U8>(r),
        cast<U8>(g),
        cast<U8>(b),
        cast<U8>(a),
    }};
    switch (tail & (N-1)) {
        case 0: vst4_u8     ((uint8_t*)(ptr+0), rgba   ); break;
        case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6);
        case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5);
        case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4);
        case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3);
        case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2);
        case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1);
        case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0);
    }
#else
    store(ptr, tail, cast<U32>(r | (g<<8)) <<  0
                   | cast<U32>(b | (a<<8)) << 16);
#endif
}

STAGE_PP(load_8888, const SkJumper_MemoryCtx* ctx) {
    load_8888(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
}
STAGE_PP(load_8888_dst, const SkJumper_MemoryCtx* ctx) {
    load_8888(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
}
STAGE_PP(store_8888, const SkJumper_MemoryCtx* ctx) {
    store_8888(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a);
}

STAGE_PP(load_bgra, const SkJumper_MemoryCtx* ctx) {
    load_8888(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &b,&g,&r,&a);
}
STAGE_PP(load_bgra_dst, const SkJumper_MemoryCtx* ctx) {
    load_8888(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &db,&dg,&dr,&da);
}
STAGE_PP(store_bgra, const SkJumper_MemoryCtx* ctx) {
    store_8888(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, b,g,r,a);
}

STAGE_GP(gather_8888, const SkJumper_GatherCtx* ctx) {
    const uint32_t* ptr;
    U32 ix = ix_and_ptr(&ptr, ctx, x,y);
    from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
}

// ~~~~~~ 16-bit memory loads and stores ~~~~~~ //

SI void load_565(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
    // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
    U16 rgb = load<U16>(ptr, tail);
    U16 R = (rgb >> 11) & 31,
        G = (rgb >>  5) & 63,
        B = (rgb >>  0) & 31;

    // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
    *r = (R << 3) | (R >> 2);
    *g = (G << 2) | (G >> 4);
    *b = (B << 3) | (B >> 2);
}
SI void store_565(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) {
    // Select the top 5,6,5 bits.
    U16 R = r >> 3,
        G = g >> 2,
        B = b >> 3;
    // Pack them back into 15|rrrrr gggggg bbbbb|0.
    store(ptr, tail, R << 11
                   | G <<  5
                   | B <<  0);
}

STAGE_PP(load_565, const SkJumper_MemoryCtx* ctx) {
    load_565(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b);
    a = 255;
}
STAGE_PP(load_565_dst, const SkJumper_MemoryCtx* ctx) {
    load_565(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db);
    da = 255;
}
STAGE_PP(store_565, const SkJumper_MemoryCtx* ctx) {
    store_565(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b);
}

// ~~~~~~ 8-bit memory loads and stores ~~~~~~ //

SI U16 load_8(const uint8_t* ptr, size_t tail) {
    return cast<U16>(load<U8>(ptr, tail));
}
SI void store_8(uint8_t* ptr, size_t tail, U16 v) {
    store(ptr, tail, cast<U8>(v));
}

STAGE_PP(load_a8, const SkJumper_MemoryCtx* ctx) {
    r = g = b = 0;
    a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
}
STAGE_PP(load_a8_dst, const SkJumper_MemoryCtx* ctx) {
    dr = dg = db = 0;
    da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
}
STAGE_PP(store_a8, const SkJumper_MemoryCtx* ctx) {
    store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a);
}

STAGE_PP(load_g8, const SkJumper_MemoryCtx* ctx) {
    r = g = b = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
    a = 255;
}
STAGE_PP(load_g8_dst, const SkJumper_MemoryCtx* ctx) {
    dr = dg = db = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
    da = 255;
}
STAGE_PP(luminance_to_alpha, Ctx::None) {
    a = (r*54 + g*183 + b*19)/256;  // 0.2126, 0.7152, 0.0722 with 256 denominator.
    r = g = b = 0;
}

// ~~~~~~ Coverage scales / lerps ~~~~~~ //

STAGE_PP(scale_1_float, const float* f) {
    U16 c = from_float(*f);
    r = div255( r * c );
    g = div255( g * c );
    b = div255( b * c );
    a = div255( a * c );
}
STAGE_PP(lerp_1_float, const float* f) {
    U16 c = from_float(*f);
    r = lerp(dr, r, c);
    g = lerp(dg, g, c);
    b = lerp(db, b, c);
    a = lerp(da, a, c);
}

STAGE_PP(scale_u8, const SkJumper_MemoryCtx* ctx) {
    U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
    r = div255( r * c );
    g = div255( g * c );
    b = div255( b * c );
    a = div255( a * c );
}
STAGE_PP(lerp_u8, const SkJumper_MemoryCtx* ctx) {
    U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
    r = lerp(dr, r, c);
    g = lerp(dg, g, c);
    b = lerp(db, b, c);
    a = lerp(da, a, c);
}

// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
    return if_then_else(a < da, min(cr,cg,cb)
                              , max(cr,cg,cb));
}
STAGE_PP(scale_565, const SkJumper_MemoryCtx* ctx) {
    U16 cr,cg,cb;
    load_565(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
    U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);

    r = div255( r * cr );
    g = div255( g * cg );
    b = div255( b * cb );
    a = div255( a * ca );
}
STAGE_PP(lerp_565, const SkJumper_MemoryCtx* ctx) {
    U16 cr,cg,cb;
    load_565(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
    U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);

    r = lerp(dr, r, cr);
    g = lerp(dg, g, cg);
    b = lerp(db, b, cb);
    a = lerp(da, a, ca);
}

// ~~~~~~ Compound stages ~~~~~~ //

STAGE_PP(srcover_rgba_8888, const SkJumper_MemoryCtx* ctx) {
    auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);

    load_8888(ptr, tail, &dr,&dg,&db,&da);
    r = r + div255( dr*inv(a) );
    g = g + div255( dg*inv(a) );
    b = b + div255( db*inv(a) );
    a = a + div255( da*inv(a) );
    store_8888(ptr, tail, r,g,b,a);
}

#endif//defined(__clang__)