aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/jumper/SkJumper_stages_lowp.cpp
blob: b07cd3a576fa0d09f8b5e8174addbfacfacb7e21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkJumper.h"
#include "SkJumper_misc.h"
#include <immintrin.h>

#if !defined(__clang__) || !defined(__x86_64__)
    #error "We're starting with just x86-64 for now, and will always require Clang."
#endif

using K = const SkJumper_constants;

#if defined(__AVX2__)
    #define WRAP(name) sk_##name##_hsw_lowp
    template <typename T> using V = T __attribute__((ext_vector_type(16)));
    static const size_t kStride = 16;
#else
    #define WRAP(name) sk_##name##_ssse3_lowp
    template <typename T> using V = T __attribute__((ext_vector_type(8)));
    static const size_t kStride = 8;
#endif

using U8  = V<uint8_t>;
using U16 = V<uint16_t>;
using U32 = V<uint32_t>;

// See SkFixed15.h for details on this format and its operations.
struct F {
    U16 vec;

    F() = default;
    F(float f) {
        // After adding 256.0f, the SkFixed15 value is the bottom two bytes of the float.
        f += 256.0f;
        vec = unaligned_load<uint16_t>(&f);
    }

    F(U16 v) : vec(v) {}
    operator U16() const { return vec; }
};

SI F operator+(F x, F y) { return x.vec + y.vec; }
SI F operator-(F x, F y) { return x.vec - y.vec; }
SI F operator*(F x, F y) {
#if defined(__AVX2__)
    return _mm256_abs_epi16(_mm256_mulhrs_epi16(x.vec, y.vec));
#else
    return _mm_abs_epi16(_mm_mulhrs_epi16(x.vec, y.vec));
#endif
}

SI F mad(F f, F m, F a) { return f*m+a; }
SI F inv(F v) { return 1.0f - v; }
SI F two(F v) { return v + v; }
SI F lerp(F from, F to, F t) { return to*t + from*inv(t); }

SI F operator<<(F x, int bits) { return x.vec << bits; }
SI F operator>>(F x, int bits) { return x.vec >> bits; }

using Stage = void(K* k, void** program, size_t x, size_t y, size_t tail, F,F,F,F, F,F,F,F);

#if defined(__AVX__)
    // We really want to make sure all paths go through this function's (implicit) vzeroupper.
    // If they don't, we'll experience severe slowdowns when we first use SSE instructions again.
    __attribute__((disable_tail_calls))
#endif
MAYBE_MSABI
extern "C" size_t WRAP(start_pipeline)(size_t x, size_t y, size_t limit, void** program, K* k) {
#if defined(JUMPER)
    F v;
#else
    F v{};
#endif
    auto start = (Stage*)load_and_inc(program);
    while (x + kStride <= limit) {
        start(k,program,x,y,0,    v,v,v,v, v,v,v,v);
        x += kStride;
    }
    if (size_t tail = limit - x) {
        start(k,program,x,y,tail, v,v,v,v, v,v,v,v);
    }
    return limit;
}
extern "C" void WRAP(just_return)(K*, void**, size_t,size_t,size_t, F,F,F,F, F,F,F,F) {}

#define STAGE(name)                                                                   \
    SI void name##_k(K* k, LazyCtx ctx, size_t x, size_t y, size_t tail,              \
                     F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);             \
    extern "C" void WRAP(name)(K* k, void** program, size_t x, size_t y, size_t tail, \
                               F r, F g, F b, F a, F dr, F dg, F db, F da) {          \
        LazyCtx ctx(program);                                                         \
        name##_k(k,ctx,x,y,tail, r,g,b,a, dr,dg,db,da);                               \
        auto next = (Stage*)load_and_inc(program);                                    \
        next(k,program,x,y,tail, r,g,b,a, dr,dg,db,da);                               \
    }                                                                                 \
    SI void name##_k(K* k, LazyCtx ctx, size_t x, size_t y, size_t tail,              \
                     F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)


// Helper functions used by multiple stages.

template <typename V, typename T>
SI V load(const T* src, size_t tail) {
    __builtin_assume(tail < kStride);
    if (__builtin_expect(tail, 0)) {
        V v{};  // Any inactive lanes are zeroed.
        switch (tail) {
            case 15: v[14] = src[14];
            case 14: v[13] = src[13];
            case 13: v[12] = src[12];
            case 12: memcpy(&v, src, 12*sizeof(T)); break;
            case 11: v[10] = src[10];
            case 10: v[ 9] = src[ 9];
            case  9: v[ 8] = src[ 8];
            case  8: memcpy(&v, src,  8*sizeof(T)); break;
            case  7: v[6] = src[6];
            case  6: v[5] = src[5];
            case  5: v[4] = src[4];
            case  4: memcpy(&v, src,  4*sizeof(T)); break;
            case  3: v[2] = src[2];
            case  2: memcpy(&v, src,  2*sizeof(T)); break;
            case  1: memcpy(&v, src,  1*sizeof(T)); break;
        }
        return v;
    }
    return unaligned_load<V>(src);
}

template <typename V, typename T>
SI void store(T* dst, V v, size_t tail) {
    __builtin_assume(tail < kStride);
    if (__builtin_expect(tail, 0)) {
        switch (tail) {
            case 15: dst[14] = v[14];
            case 14: dst[13] = v[13];
            case 13: dst[12] = v[12];
            case 12: memcpy(dst, &v, 12*sizeof(T)); break;
            case 11: dst[10] = v[10];
            case 10: dst[ 9] = v[ 9];
            case  9: dst[ 8] = v[ 8];
            case  8: memcpy(dst, &v,  8*sizeof(T)); break;
            case  7: dst[6] = v[6];
            case  6: dst[5] = v[5];
            case  5: dst[4] = v[4];
            case  4: memcpy(dst, &v,  4*sizeof(T)); break;
            case  3: dst[2] = v[2];
            case  2: memcpy(dst, &v,  2*sizeof(T)); break;
            case  1: memcpy(dst, &v,  1*sizeof(T)); break;
        }
        return;
    }
    unaligned_store(dst, v);
}

// TODO: mask loads and stores with AVX2

// Scale from [0,255] up to [0,32768].
SI F from_wide_byte(U16 bytes) {
    // Ideally we'd scale by 32768/255 = 128.50196, but instead we'll approximate
    // that a little more cheaply as 256*32897/65536 = 128.50391.
    // 0 and 255 map to 0 and 32768 correctly, and nothing else is off by more than 1 bit.
#if defined(__AVX2__)
    return _mm256_mulhi_epu16(bytes << 8, U16(32897));
#else
    return    _mm_mulhi_epu16(bytes << 8, U16(32897));
#endif
}
SI F from_byte(U8 bytes) {
    return from_wide_byte(__builtin_convertvector(bytes, U16));
}

// Pack from [0,32768] down to [0,255].
SI U16 to_wide_byte(F v) {
    // The simplest thing works great: divide by 128 and saturate.
#if defined(__AVX2__)
    return _mm256_min_epi16(v >> 7, U16(255));
#else
    return    _mm_min_epi16(v >> 7, U16(255));
#endif
}
SI U8 to_byte(F v) {
    // Like to_wide_byte(), but we'll bake the saturation into the 16->8 bit pack.
#if defined(__AVX2__)
    return _mm_packus_epi16(_mm256_extracti128_si256(v >> 7, 0),
                            _mm256_extracti128_si256(v >> 7, 1));
#else
    // Only the bottom 8 bytes are of interest... it doesn't matter what we pack on top.
    __m128i packed = _mm_packus_epi16(v >> 7, v >> 7);
    return unaligned_load<U8>(&packed);
#endif
}

SI void from_8888(U32 rgba, F* r, F* g, F* b, F* a) {
    *r = from_wide_byte(__builtin_convertvector((rgba >>  0) & 0xff, U16));
    *g = from_wide_byte(__builtin_convertvector((rgba >>  8) & 0xff, U16));
    *b = from_wide_byte(__builtin_convertvector((rgba >> 16) & 0xff, U16));
    *a = from_wide_byte(__builtin_convertvector((rgba >> 24) & 0xff, U16));
}

SI U32 to_8888(F r, F g, F b, F a) {
    return __builtin_convertvector(to_wide_byte(r), U32) <<  0
         | __builtin_convertvector(to_wide_byte(g), U32) <<  8
         | __builtin_convertvector(to_wide_byte(b), U32) << 16
         | __builtin_convertvector(to_wide_byte(a), U32) << 24;
}

// Stages!

STAGE(constant_color) {
    // We're converting to fixed point, which lets us play some IEEE representation tricks,
    // replacing a naive *32768 and float->int conversion with a simple float add.
    using F32x4 = float    __attribute__((ext_vector_type(4)));
    using U16x8 = uint16_t __attribute__((ext_vector_type(8)));
    auto bits = (U16x8)(unaligned_load<F32x4>((const float*)ctx) + 256.0f);
    r = (U16)bits[0];
    g = (U16)bits[2];
    b = (U16)bits[4];
    a = (U16)bits[6];
}

STAGE(set_rgb) {
    auto rgb = (const float*)ctx;
    r = rgb[0];
    g = rgb[1];
    b = rgb[2];
}

STAGE(premul) {
    r = r * a;
    g = g * a;
    b = b * a;
}

STAGE(load_8888) {
    auto ptr = *(const uint32_t**)ctx + x;
    from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
}
STAGE(load_8888_dst) {
    auto ptr = *(const uint32_t**)ctx + x;
    from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
}
STAGE(store_8888) {
    auto ptr = *(uint32_t**)ctx + x;
    store(ptr, to_8888(r,g,b,a), tail);
}

STAGE(load_bgra) {
    auto ptr = *(const uint32_t**)ctx + x;
    from_8888(load<U32>(ptr, tail), &b,&g,&r,&a);
}
STAGE(load_bgra_dst) {
    auto ptr = *(const uint32_t**)ctx + x;
    from_8888(load<U32>(ptr, tail), &db,&dg,&dr,&da);
}
STAGE(store_bgra) {
    auto ptr = *(uint32_t**)ctx + x;
    store(ptr, to_8888(b,g,r,a), tail);
}

STAGE(load_a8) {
    auto ptr = *(const uint8_t**)ctx + x;
    r = g = b = 0.0f;
    a = from_byte(load<U8>(ptr, tail));
}
STAGE(load_a8_dst) {
    auto ptr = *(const uint8_t**)ctx + x;
    dr = dg = db = 0.0f;
    da = from_byte(load<U8>(ptr, tail));
}
STAGE(store_a8) {
    auto ptr = *(uint8_t**)ctx + x;
    store(ptr, to_byte(a), tail);
}

STAGE(load_g8) {
    auto ptr = *(const uint8_t**)ctx + x;
    r = g = b = from_byte(load<U8>(ptr, tail));
    a = 1.0f;
}

STAGE(load_g8_dst) {
    auto ptr = *(const uint8_t**)ctx + x;
    dr = dg = db = from_byte(load<U8>(ptr, tail));
    da = 1.0f;
}

STAGE(srcover_rgba_8888) {
    auto ptr = *(uint32_t**)ctx + x;

    from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);

    r = mad(dr, inv(a), r);
    g = mad(dg, inv(a), g);
    b = mad(db, inv(a), b);
    a = mad(da, inv(a), a);

    store(ptr, to_8888(r,g,b,a), tail);
}

STAGE(scale_1_float) {
    float c = *(const float*)ctx;

    r = r * c;
    g = g * c;
    b = b * c;
    a = a * c;
}
STAGE(scale_u8) {
    auto ptr = *(const uint8_t**)ctx + x;

    U8 scales = load<U8>(ptr, tail);
    F c = from_byte(scales);

    r = r * c;
    g = g * c;
    b = b * c;
    a = a * c;
}

STAGE(lerp_1_float) {
    float c = *(const float*)ctx;

    r = lerp(dr, r, c);
    g = lerp(dg, g, c);
    b = lerp(db, b, c);
    a = lerp(da, a, c);
}
STAGE(lerp_u8) {
    auto ptr = *(const uint8_t**)ctx + x;

    U8 scales = load<U8>(ptr, tail);
    F c = from_byte(scales);

    r = lerp(dr, r, c);
    g = lerp(dg, g, c);
    b = lerp(db, b, c);
    a = lerp(da, a, c);
}

STAGE(swap_rb) {
    auto tmp = r;
    r = b;
    b = tmp;
}
STAGE(move_src_dst) {
    dr = r;
    dg = g;
    db = b;
    da = a;
}
STAGE(move_dst_src) {
    r = dr;
    g = dg;
    b = db;
    a = da;
}

// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name)                       \
    SI F name##_channel(F s, F d, F sa, F da); \
    STAGE(name) {                              \
        r = name##_channel(r,dr,a,da);         \
        g = name##_channel(g,dg,a,da);         \
        b = name##_channel(b,db,a,da);         \
        a = name##_channel(a,da,a,da);         \
    }                                          \
    SI F name##_channel(F s, F d, F sa, F da)

BLEND_MODE(clear)    { return 0.0f; }
BLEND_MODE(srcatop)  { return s*da + d*inv(sa); }
BLEND_MODE(dstatop)  { return d*sa + s*inv(da); }
BLEND_MODE(srcin)    { return s * da; }
BLEND_MODE(dstin)    { return d * sa; }
BLEND_MODE(srcout)   { return s * inv(da); }
BLEND_MODE(dstout)   { return d * inv(sa); }
BLEND_MODE(srcover)  { return mad(d, inv(sa), s); }
BLEND_MODE(dstover)  { return mad(s, inv(da), d); }

BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(screen)   { return s + inv(s)*d; }
BLEND_MODE(xor_)     { return s*inv(da) + d*inv(sa); }

#undef BLEND_MODE