aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/jumper/SkJumper_stages.cpp
blob: c24531a9d6af2e17562ab01e4e80b43cd7656b55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkJumper.h"
#include <string.h>

// It's tricky to relocate code referencing ordinary constants, so we read them from this struct.
using K = const SkJumper_constants;

#if !defined(JUMPER)
    // This path should lead to portable code that can be compiled directly into Skia.
    // (All other paths are compiled offline by Clang into SkJumper_generated.h.)
    #include <math.h>

    using F   = float;
    using I32 =  int32_t;
    using U32 = uint32_t;
    using U8  = uint8_t;

    static F   mad(F f, F m, F a)  { return f*m+a; }
    static F   min(F a, F b)       { return fminf(a,b); }
    static F   max(F a, F b)       { return fmaxf(a,b); }
    static F   rcp  (F v)          { return 1.0f / v; }
    static F   rsqrt(F v)          { return 1.0f / sqrtf(v); }
    static U32 round(F v, F scale) { return (uint32_t)lrintf(v*scale); }

    static F if_then_else(I32 c, F t, F e) { return c ? t : e; }

    static F gather(const float* p, U32 ix) { return p[ix]; }

    #define WRAP(name) sk_##name

#elif defined(__aarch64__)
    #include <arm_neon.h>

    // Since we know we're using Clang, we can use its vector extensions.
    using F   = float    __attribute__((ext_vector_type(4)));
    using I32 =  int32_t __attribute__((ext_vector_type(4)));
    using U32 = uint32_t __attribute__((ext_vector_type(4)));
    using U8  = uint8_t  __attribute__((ext_vector_type(4)));

    // We polyfill a few routines that Clang doesn't build into ext_vector_types.
    static F   mad(F f, F m, F a)                   { return vfmaq_f32(a,f,m);        }
    static F   min(F a, F b)                        { return vminq_f32(a,b);          }
    static F   max(F a, F b)                        { return vmaxq_f32(a,b);          }
    static F   rcp  (F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e  ) * e; }
    static F   rsqrt(F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
    static U32 round(F v, F scale)                  { return vcvtnq_u32_f32(v*scale); }

    static F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }

    static F gather(const float* p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; }

    #define WRAP(name) sk_##name##_aarch64

#elif defined(__arm__)
    #if defined(__thumb2__) || !defined(__ARM_ARCH_7A__) || !defined(__ARM_VFPV4__)
        #error On ARMv7, compile with -march=armv7-a -mfpu=neon-vfp4, without -mthumb.
    #endif
    #include <arm_neon.h>

    // We can pass {s0-s15} as arguments under AAPCS-VFP.  We'll slice that as 8 d-registers.
    using F   = float    __attribute__((ext_vector_type(2)));
    using I32 =  int32_t __attribute__((ext_vector_type(2)));
    using U32 = uint32_t __attribute__((ext_vector_type(2)));
    using U8  = uint8_t  __attribute__((ext_vector_type(2)));

    static F   mad(F f, F m, F a)                  { return vfma_f32(a,f,m);        }
    static F   min(F a, F b)                       { return vmin_f32(a,b);          }
    static F   max(F a, F b)                       { return vmax_f32(a,b);          }
    static F   rcp  (F v) { auto e = vrecpe_f32 (v); return vrecps_f32 (v,e  ) * e; }
    static F   rsqrt(F v) { auto e = vrsqrte_f32(v); return vrsqrts_f32(v,e*e) * e; }
    static U32 round(F v, F scale)                 { return vcvt_u32_f32(mad(v,scale,0.5f)); }

    static F if_then_else(I32 c, F t, F e) { return vbsl_f32((U32)c,t,e); }

    static F gather(const float* p, U32 ix) { return {p[ix[0]], p[ix[1]]}; }

    #define WRAP(name) sk_##name##_vfp4

#elif defined(__AVX2__) && defined(__FMA__) && defined(__F16C__)
    #include <immintrin.h>

    // These are __m256 and __m256i, but friendlier and strongly-typed.
    using F   = float    __attribute__((ext_vector_type(8)));
    using I32 =  int32_t __attribute__((ext_vector_type(8)));
    using U32 = uint32_t __attribute__((ext_vector_type(8)));
    using U8  = uint8_t  __attribute__((ext_vector_type(8)));

    static F   mad(F f, F m, F a)  { return _mm256_fmadd_ps(f,m,a);}
    static F   min(F a, F b)       { return _mm256_min_ps(a,b);    }
    static F   max(F a, F b)       { return _mm256_max_ps(a,b);    }
    static F   rcp  (F v)          { return _mm256_rcp_ps  (v);    }
    static F   rsqrt(F v)          { return _mm256_rsqrt_ps(v);    }
    static U32 round(F v, F scale) { return _mm256_cvtps_epi32(v*scale); }

    static F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }

    static F gather(const float* p, U32 ix) { return _mm256_i32gather_ps(p, ix, 4); }

    #define WRAP(name) sk_##name##_hsw

#elif defined(__AVX__)
    #include <immintrin.h>

    using F   = float    __attribute__((ext_vector_type(8)));
    using I32 =  int32_t __attribute__((ext_vector_type(8)));
    using U32 = uint32_t __attribute__((ext_vector_type(8)));
    using U8  = uint8_t  __attribute__((ext_vector_type(8)));

    static F   mad(F f, F m, F a)  { return f*m+a;              }
    static F   min(F a, F b)       { return _mm256_min_ps(a,b); }
    static F   max(F a, F b)       { return _mm256_max_ps(a,b); }
    static F   rcp  (F v)          { return _mm256_rcp_ps  (v); }
    static F   rsqrt(F v)          { return _mm256_rsqrt_ps(v); }
    static U32 round(F v, F scale) { return _mm256_cvtps_epi32(v*scale); }

    static F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }

    static F gather(const float* p, U32 ix) {
        return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
                 p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
    }

    #define WRAP(name) sk_##name##_avx

#elif defined(__SSE2__)
    #include <immintrin.h>

    using F   = float    __attribute__((ext_vector_type(4)));
    using I32 =  int32_t __attribute__((ext_vector_type(4)));
    using U32 = uint32_t __attribute__((ext_vector_type(4)));
    using U8  = uint8_t  __attribute__((ext_vector_type(4)));

    static F   mad(F f, F m, F a)  { return f*m+a;           }
    static F   min(F a, F b)       { return _mm_min_ps(a,b); }
    static F   max(F a, F b)       { return _mm_max_ps(a,b); }
    static F   rcp  (F v)          { return _mm_rcp_ps  (v); }
    static F   rsqrt(F v)          { return _mm_rsqrt_ps(v); }
    static U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }

    static F if_then_else(I32 c, F t, F e) {
    #if defined(__SSE4_1__)
        return _mm_blendv_ps(e,t,c);
    #else
        return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
    #endif
    }

    static F gather(const float* p, U32 ix) { return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; }

    #if defined(__SSE4_1__)
        #define WRAP(name) sk_##name##_sse41
    #else
        #define WRAP(name) sk_##name##_sse2
    #endif
#endif

static F lerp(F from, F to, F t) {
    return mad(to-from, t, from);
}

// We need to be a careful with casts.
// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
// These named casts and bit_cast() are always what they seem to be.
#if defined(JUMPER)
    static F   cast  (U32 v) { return __builtin_convertvector((I32)v, F);   }
    static U32 expand(U8  v) { return __builtin_convertvector(     v, U32); }
#else
    static F   cast  (U32 v) { return (F)v; }
    static U32 expand(U8  v) { return (U32)v; }
#endif

template <typename T, typename P>
static T unaligned_load(const P* p) {
    T v;
    memcpy(&v, p, sizeof(v));
    return v;
}

template <typename Dst, typename Src>
static Dst bit_cast(const Src& src) {
    static_assert(sizeof(Dst) == sizeof(Src), "");
    return unaligned_load<Dst>(&src);
}

// Sometimes we want to work with 4 floats directly, regardless of the depth of the F vector.
#if defined(JUMPER)
    using F4 = float __attribute__((ext_vector_type(4)));
#else
    struct F4 {
        float vals[4];
        float operator[](int i) const { return vals[i]; }
    };
#endif

// Stages tail call between each other by following program,
// an interlaced sequence of Stage pointers and context pointers.
using Stage = void(size_t x, void** program, K* k, F,F,F,F, F,F,F,F);

static void* load_and_inc(void**& program) {
#if defined(__GNUC__) && defined(__x86_64__)
    // Passing program as the second Stage argument makes it likely that it's in %rsi,
    // so this is usually a single instruction *program++.
    void* rax;
    asm("lodsq" : "=a"(rax), "+S"(program));  // Write-only %rax, read-write %rsi.
    return rax;
    // When a Stage uses its ctx pointer, this optimization typically cuts an instruction:
    //    mov    (%rsi), %rcx     // ctx  = program[0]
    //    ...
    //    mov 0x8(%rsi), %rax     // next = program[1]
    //    add $0x10, %rsi         // program += 2
    //    jmpq *%rax              // JUMP!
    // becomes
    //    lods   %ds:(%rsi),%rax  // ctx  = *program++;
    //    ...
    //    lods   %ds:(%rsi),%rax  // next = *program++;
    //    jmpq *%rax              // JUMP!
    //
    // When a Stage doesn't use its ctx pointer, it's 3 instructions either way,
    // but using lodsq (a 2-byte instruction) tends to trim a few bytes.
#else
    // On ARM *program++ compiles into a single instruction without any handholding.
    return *program++;
#endif
}

#define STAGE(name)                                                           \
    static void name##_k(size_t& x, void* ctx, K* k,                          \
                         F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
    extern "C" void WRAP(name)(size_t x, void** program, K* k,                \
                              F r, F g, F b, F a, F dr, F dg, F db, F da) {   \
        auto ctx = load_and_inc(program);                                     \
        name##_k(x,ctx,k, r,g,b,a, dr,dg,db,da);                              \
        auto next = (Stage*)load_and_inc(program);                            \
        next(x,program,k, r,g,b,a, dr,dg,db,da);                              \
    }                                                                         \
    static void name##_k(size_t& x, void* ctx, K* k,                          \
                         F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)

// Some glue stages that don't fit the normal pattern of stages.

#if defined(JUMPER) && defined(WIN)
__attribute__((ms_abi))
#endif
extern "C" size_t WRAP(start_pipeline)(size_t x, void** program, K* k, size_t limit) {
    F v{};
    size_t stride = sizeof(F) / sizeof(float);
    auto start = (Stage*)load_and_inc(program);
    while (x + stride <= limit) {
        start(x,program,k, v,v,v,v, v,v,v,v);
        x += stride;
    }
    return x;
}

// Ends the chain of tail calls, returning back up to start_pipeline (and from there to the caller).
extern "C" void WRAP(just_return)(size_t, void**, K*, F,F,F,F, F,F,F,F) {}

// We can now define Stages!

// Some things to keep in mind while writing Stages:
//   - do not branch;                                           (i.e. avoid jmp)
//   - do not call functions that don't inline;                 (i.e. avoid call, ret)
//   - do not use constant literals other than 0, ~0 and 0.0f.  (i.e. avoid rip relative addressing)
//
// Some things that should work fine:
//   - 0, ~0, and 0.0f;
//   - arithmetic;
//   - functions of F and U32 that we've defined above;
//   - temporary values;
//   - lambdas;
//   - memcpy() with a compile-time constant size argument.

STAGE(seed_shader) {
    auto y = *(const int*)ctx;

    // It's important for speed to explicitly cast(x) and cast(y),
    // which has the effect of splatting them to vectors before converting to floats.
    // On Intel this breaks a data dependency on previous loop iterations' registers.

    r = cast(x) + k->_0_5 + unaligned_load<F>(k->iota);
    g = cast(y) + k->_0_5;
    b = k->_1;
    a = 0;
    dr = dg = db = da = 0;
}

STAGE(constant_color) {
    auto rgba = unaligned_load<F4>(ctx);
    r = rgba[0];
    g = rgba[1];
    b = rgba[2];
    a = rgba[3];
}

STAGE(clear) {
    r = g = b = a = 0;
}

STAGE(plus_) {
    r = r + dr;
    g = g + dg;
    b = b + db;
    a = a + da;
}

STAGE(srcover) {
    auto A = k->_1 - a;
    r = mad(dr, A, r);
    g = mad(dg, A, g);
    b = mad(db, A, b);
    a = mad(da, A, a);
}
STAGE(dstover) {
    auto DA = k->_1 - da;
    r = mad(r, DA, dr);
    g = mad(g, DA, dg);
    b = mad(b, DA, db);
    a = mad(a, DA, da);
}

STAGE(clamp_0) {
    r = max(r, 0);
    g = max(g, 0);
    b = max(b, 0);
    a = max(a, 0);
}

STAGE(clamp_1) {
    r = min(r, k->_1);
    g = min(g, k->_1);
    b = min(b, k->_1);
    a = min(a, k->_1);
}

STAGE(clamp_a) {
    a = min(a, k->_1);
    r = min(r, a);
    g = min(g, a);
    b = min(b, a);
}

STAGE(set_rgb) {
    auto rgb = (const float*)ctx;
    r = rgb[0];
    g = rgb[1];
    b = rgb[2];
}
STAGE(swap_rb) {
    auto tmp = r;
    r = b;
    b = tmp;
}

STAGE(swap) {
    auto swap = [](F& v, F& dv) {
        auto tmp = v;
        v = dv;
        dv = tmp;
    };
    swap(r, dr);
    swap(g, dg);
    swap(b, db);
    swap(a, da);
}
STAGE(move_src_dst) {
    dr = r;
    dg = g;
    db = b;
    da = a;
}
STAGE(move_dst_src) {
    r = dr;
    g = dg;
    b = db;
    a = da;
}

STAGE(premul) {
    r = r * a;
    g = g * a;
    b = b * a;
}
STAGE(unpremul) {
    auto scale = if_then_else(a == 0, 0, k->_1 / a);
    r = r * scale;
    g = g * scale;
    b = b * scale;
}

STAGE(from_srgb) {
    auto fn = [&](F s) {
        auto lo = s * k->_1_1292;
        auto hi = mad(s*s, mad(s, k->_03000, k->_06975), k->_00025);
        return if_then_else(s < k->_0055, lo, hi);
    };
    r = fn(r);
    g = fn(g);
    b = fn(b);
}
STAGE(to_srgb) {
    auto fn = [&](F l) {
        F sqrt = rcp  (rsqrt(l)),
          ftrt = rsqrt(rsqrt(l));
        auto lo = l * k->_1246;
        auto hi = min(k->_1, mad(k->_0411192, ftrt,
                             mad(k->_0689206, sqrt,
                                 k->n_00988)));
        return if_then_else(l < k->_00043, lo, hi);
    };
    r = fn(r);
    g = fn(g);
    b = fn(b);
}

STAGE(scale_u8) {
    auto ptr = *(const uint8_t**)ctx + x;

    auto scales = unaligned_load<U8>(ptr);
    auto c = cast(expand(scales)) * k->_1_255;

    r = r * c;
    g = g * c;
    b = b * c;
    a = a * c;
}
STAGE(lerp_u8) {
    auto ptr = *(const uint8_t**)ctx + x;

    auto scales = unaligned_load<U8>(ptr);
    auto c = cast(expand(scales)) * k->_1_255;

    r = lerp(dr, r, c);
    g = lerp(dg, g, c);
    b = lerp(db, b, c);
    a = lerp(da, a, c);
}

STAGE(load_tables) {
    struct Ctx {
        const uint32_t* src;
        const float *r, *g, *b;
    };
    auto c = (const Ctx*)ctx;

    auto px = unaligned_load<U32>(c->src + x);
    r = gather(c->r, (px      ) & k->_0x000000ff);
    g = gather(c->g, (px >>  8) & k->_0x000000ff);
    b = gather(c->b, (px >> 16) & k->_0x000000ff);
    a = cast(        (px >> 24)) * k->_1_255;
}

STAGE(load_8888) {
    auto ptr = *(const uint32_t**)ctx + x;

    auto px = unaligned_load<U32>(ptr);
    r = cast((px      ) & k->_0x000000ff) * k->_1_255;
    g = cast((px >>  8) & k->_0x000000ff) * k->_1_255;
    b = cast((px >> 16) & k->_0x000000ff) * k->_1_255;
    a = cast((px >> 24)                 ) * k->_1_255;
}

STAGE(store_8888) {
    auto ptr = *(uint32_t**)ctx + x;

    U32 px = round(r, k->_255)
           | round(g, k->_255) <<  8
           | round(b, k->_255) << 16
           | round(a, k->_255) << 24;
    memcpy(ptr, &px, sizeof(px));
}

STAGE(load_f16) {
    auto ptr = *(const uint64_t**)ctx + x;

#if !defined(JUMPER)
    auto half_to_float = [&](int16_t h) {
        if (h < 0x0400) { h = 0; }                // Flush denorm and negative to zero.
        return bit_cast<F>(h << 13)               // Line up the mantissa,
             * bit_cast<F>(U32(k->_0x77800000));  // then fix up the exponent.
    };
    auto rgba = (const int16_t*)ptr;
    r = half_to_float(rgba[0]);
    g = half_to_float(rgba[1]);
    b = half_to_float(rgba[2]);
    a = half_to_float(rgba[3]);
#elif defined(__aarch64__)
    auto halfs = vld4_f16((const float16_t*)ptr);
    r = vcvt_f32_f16(halfs.val[0]);
    g = vcvt_f32_f16(halfs.val[1]);
    b = vcvt_f32_f16(halfs.val[2]);
    a = vcvt_f32_f16(halfs.val[3]);
#elif defined(__arm__)
    auto rb_ga = vld2_f16((const float16_t*)ptr);
    auto rb = vcvt_f32_f16(rb_ga.val[0]),
         ga = vcvt_f32_f16(rb_ga.val[1]);
    r = {rb[0], rb[2]};
    g = {ga[0], ga[2]};
    b = {rb[1], rb[3]};
    a = {ga[1], ga[3]};
#elif defined(__AVX2__) && defined(__FMA__) && defined(__F16C__)
    auto _01 = _mm_loadu_si128(((__m128i*)ptr) + 0),
         _23 = _mm_loadu_si128(((__m128i*)ptr) + 1),
         _45 = _mm_loadu_si128(((__m128i*)ptr) + 2),
         _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);

    auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
         _13 = _mm_unpackhi_epi16(_01, _23),  // r1 r3 g1 g3 b1 b3 a1 a3
         _46 = _mm_unpacklo_epi16(_45, _67),
         _57 = _mm_unpackhi_epi16(_45, _67);

    auto rg0123 = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
         ba0123 = _mm_unpackhi_epi16(_02, _13),  // b0 b1 b2 b3 a0 a1 a2 a3
         rg4567 = _mm_unpacklo_epi16(_46, _57),
         ba4567 = _mm_unpackhi_epi16(_46, _57);

    r = _mm256_cvtph_ps(_mm_unpacklo_epi64(rg0123, rg4567));
    g = _mm256_cvtph_ps(_mm_unpackhi_epi64(rg0123, rg4567));
    b = _mm256_cvtph_ps(_mm_unpacklo_epi64(ba0123, ba4567));
    a = _mm256_cvtph_ps(_mm_unpackhi_epi64(ba0123, ba4567));
#elif defined(__AVX__)
    auto _01 = _mm_loadu_si128(((__m128i*)ptr) + 0),
         _23 = _mm_loadu_si128(((__m128i*)ptr) + 1),
         _45 = _mm_loadu_si128(((__m128i*)ptr) + 2),
         _67 = _mm_loadu_si128(((__m128i*)ptr) + 3);

    auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
         _13 = _mm_unpackhi_epi16(_01, _23),  // r1 r3 g1 g3 b1 b3 a1 a3
         _46 = _mm_unpacklo_epi16(_45, _67),
         _57 = _mm_unpackhi_epi16(_45, _67);

    auto rg0123 = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
         ba0123 = _mm_unpackhi_epi16(_02, _13),  // b0 b1 b2 b3 a0 a1 a2 a3
         rg4567 = _mm_unpacklo_epi16(_46, _57),
         ba4567 = _mm_unpackhi_epi16(_46, _57);

    // half_to_float() slows down ~10x for denorm inputs, so we flush them to zero.
    // With a signed comparison this conveniently also flushes negative half floats to zero.
    auto ftz = [k](__m128i v) {
        return _mm_andnot_si128(_mm_cmplt_epi16(v, _mm_set1_epi32(k->_0x04000400)), v);
    };
    rg0123 = ftz(rg0123);
    ba0123 = ftz(ba0123);
    rg4567 = ftz(rg4567);
    ba4567 = ftz(ba4567);

    U32 R = _mm256_setr_m128i(_mm_unpacklo_epi16(rg0123, _mm_setzero_si128()),
                              _mm_unpacklo_epi16(rg4567, _mm_setzero_si128())),
        G = _mm256_setr_m128i(_mm_unpackhi_epi16(rg0123, _mm_setzero_si128()),
                              _mm_unpackhi_epi16(rg4567, _mm_setzero_si128())),
        B = _mm256_setr_m128i(_mm_unpacklo_epi16(ba0123, _mm_setzero_si128()),
                              _mm_unpacklo_epi16(ba4567, _mm_setzero_si128())),
        A = _mm256_setr_m128i(_mm_unpackhi_epi16(ba0123, _mm_setzero_si128()),
                              _mm_unpackhi_epi16(ba4567, _mm_setzero_si128()));

    auto half_to_float = [&](U32 h) {
        return bit_cast<F>(h << 13)               // Line up the mantissa,
             * bit_cast<F>(U32(k->_0x77800000));  // then fix up the exponent.
    };

    r = half_to_float(R);
    g = half_to_float(G);
    b = half_to_float(B);
    a = half_to_float(A);

#elif defined(__SSE2__)
    auto _01 = _mm_loadu_si128(((__m128i*)ptr) + 0),
         _23 = _mm_loadu_si128(((__m128i*)ptr) + 1);

    auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
         _13 = _mm_unpackhi_epi16(_01, _23);  // r1 r3 g1 g3 b1 b3 a1 a3

    auto rg = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
         ba = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 a0 a1 a2 a3

    // Same deal as AVX, flush denorms and negatives to zero.
    auto ftz = [k](__m128i v) {
        return _mm_andnot_si128(_mm_cmplt_epi16(v, _mm_set1_epi32(k->_0x04000400)), v);
    };
    rg = ftz(rg);
    ba = ftz(ba);

    auto half_to_float = [&](U32 h) {
        return bit_cast<F>(h << 13)               // Line up the mantissa,
             * bit_cast<F>(U32(k->_0x77800000));  // then fix up the exponent.
    };

    r = half_to_float(_mm_unpacklo_epi16(rg, _mm_setzero_si128()));
    g = half_to_float(_mm_unpackhi_epi16(rg, _mm_setzero_si128()));
    b = half_to_float(_mm_unpacklo_epi16(ba, _mm_setzero_si128()));
    a = half_to_float(_mm_unpackhi_epi16(ba, _mm_setzero_si128()));
#endif
}

STAGE(store_f16) {
    auto ptr = *(uint64_t**)ctx + x;

#if !defined(JUMPER)
    auto float_to_half = [&](F f) {
        return bit_cast<U32>(f * bit_cast<F>(U32(k->_0x07800000)))  // Fix up the exponent,
            >> 13;                                                  // then line up the mantissa.
    };
    auto rgba = (int16_t*)ptr;
    rgba[0] = float_to_half(r);
    rgba[1] = float_to_half(g);
    rgba[2] = float_to_half(b);
    rgba[3] = float_to_half(a);
#elif defined(__aarch64__)
    float16x4x4_t halfs = {{
        vcvt_f16_f32(r),
        vcvt_f16_f32(g),
        vcvt_f16_f32(b),
        vcvt_f16_f32(a),
    }};
    vst4_f16((float16_t*)ptr, halfs);
#elif defined(__arm__)
    float16x4x2_t rb_ga = {{
        vcvt_f16_f32(float32x4_t{r[0], b[0], r[1], b[1]}),
        vcvt_f16_f32(float32x4_t{g[0], a[0], g[1], a[1]}),
    }};
    vst2_f16((float16_t*)ptr, rb_ga);
#elif defined(__AVX2__) && defined(__FMA__) && defined(__F16C__)
    auto R = _mm256_cvtps_ph(r, _MM_FROUND_CUR_DIRECTION),
         G = _mm256_cvtps_ph(g, _MM_FROUND_CUR_DIRECTION),
         B = _mm256_cvtps_ph(b, _MM_FROUND_CUR_DIRECTION),
         A = _mm256_cvtps_ph(a, _MM_FROUND_CUR_DIRECTION);

    auto rg0123 = _mm_unpacklo_epi16(R, G),  // r0 g0 r1 g1 r2 g2 r3 g3
         rg4567 = _mm_unpackhi_epi16(R, G),  // r4 g4 r5 g5 r6 g6 r7 g7
         ba0123 = _mm_unpacklo_epi16(B, A),
         ba4567 = _mm_unpackhi_epi16(B, A);

    _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg0123, ba0123));
    _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg0123, ba0123));
    _mm_storeu_si128((__m128i*)ptr + 2, _mm_unpacklo_epi32(rg4567, ba4567));
    _mm_storeu_si128((__m128i*)ptr + 3, _mm_unpackhi_epi32(rg4567, ba4567));
#elif defined(__AVX__)
    auto float_to_half = [&](F f) {
        return bit_cast<U32>(f * bit_cast<F>(U32(k->_0x07800000)))  // Fix up the exponent,
            >> 13;                                                  // then line up the mantissa.
    };
    U32 R = float_to_half(r),
        G = float_to_half(g),
        B = float_to_half(b),
        A = float_to_half(a);
    auto r0123 = _mm256_extractf128_si256(R, 0),
         r4567 = _mm256_extractf128_si256(R, 1),
         g0123 = _mm256_extractf128_si256(G, 0),
         g4567 = _mm256_extractf128_si256(G, 1),
         b0123 = _mm256_extractf128_si256(B, 0),
         b4567 = _mm256_extractf128_si256(B, 1),
         a0123 = _mm256_extractf128_si256(A, 0),
         a4567 = _mm256_extractf128_si256(A, 1);
    auto rg0123 = r0123 | _mm_slli_si128(g0123,2),
         rg4567 = r4567 | _mm_slli_si128(g4567,2),
         ba0123 = b0123 | _mm_slli_si128(a0123,2),
         ba4567 = b4567 | _mm_slli_si128(a4567,2);
    _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg0123, ba0123));
    _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg0123, ba0123));
    _mm_storeu_si128((__m128i*)ptr + 2, _mm_unpacklo_epi32(rg4567, ba4567));
    _mm_storeu_si128((__m128i*)ptr + 3, _mm_unpackhi_epi32(rg4567, ba4567));
#elif defined(__SSE2__)
    auto float_to_half = [&](F f) {
        return bit_cast<U32>(f * bit_cast<F>(U32(k->_0x07800000)))  // Fix up the exponent,
            >> 13;                                                  // then line up the mantissa.
    };
    U32 R = float_to_half(r),
        G = float_to_half(g),
        B = float_to_half(b),
        A = float_to_half(a);
    U32 rg = R | _mm_slli_si128(G,2),
        ba = B | _mm_slli_si128(A,2);
    _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
    _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
#endif
}

static F clamp(const F& v, float limit) {
    F l = bit_cast<F>(bit_cast<U32>(F(limit)) + U32(0xffffffff));  // limit - 1 ulp
    return max(0, min(v, l));
}
STAGE(clamp_x) { r = clamp(r, *(const float*)ctx); }
STAGE(clamp_y) { g = clamp(g, *(const float*)ctx); }

STAGE(matrix_2x3) {
    auto m = (const float*)ctx;

    auto R = mad(r,m[0], mad(g,m[2], m[4])),
         G = mad(r,m[1], mad(g,m[3], m[5]));
    r = R;
    g = G;
}
STAGE(matrix_3x4) {
    auto m = (const float*)ctx;

    auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
         G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
         B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
    r = R;
    g = G;
    b = B;
}

STAGE(linear_gradient_2stops) {
    struct Ctx { F4 c0, dc; };
    auto c = unaligned_load<Ctx>(ctx);

    auto t = r;
    r = mad(t, c.dc[0], c.c0[0]);
    g = mad(t, c.dc[1], c.c0[1]);
    b = mad(t, c.dc[2], c.c0[2]);
    a = mad(t, c.dc[3], c.c0[3]);
}