aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/image/SkImageShader.cpp
blob: a486f71dfde21365f54db34b6619be9b2508ebaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkBitmapProcShader.h"
#include "SkBitmapProvider.h"
#include "SkColorShader.h"
#include "SkColorTable.h"
#include "SkEmptyShader.h"
#include "SkImage_Base.h"
#include "SkImageShader.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"

SkImageShader::SkImageShader(const SkImage* img, TileMode tmx, TileMode tmy, const SkMatrix* matrix)
    : INHERITED(matrix)
    , fImage(SkRef(img))
    , fTileModeX(tmx)
    , fTileModeY(tmy)
{}

sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) {
    const TileMode tx = (TileMode)buffer.readUInt();
    const TileMode ty = (TileMode)buffer.readUInt();
    SkMatrix matrix;
    buffer.readMatrix(&matrix);
    SkAutoTUnref<SkImage> img(buffer.readImage());
    if (!img) {
        return nullptr;
    }
    return SkImageShader::Make(img, tx, ty, &matrix);
}

void SkImageShader::flatten(SkWriteBuffer& buffer) const {
    buffer.writeUInt(fTileModeX);
    buffer.writeUInt(fTileModeY);
    buffer.writeMatrix(this->getLocalMatrix());
    buffer.writeImage(fImage);
}

bool SkImageShader::isOpaque() const {
    return fImage->isOpaque();
}

size_t SkImageShader::onContextSize(const ContextRec& rec) const {
    return SkBitmapProcLegacyShader::ContextSize(rec, SkBitmapProvider(fImage).info());
}

SkShader::Context* SkImageShader::onCreateContext(const ContextRec& rec, void* storage) const {
    return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY,
                                           SkBitmapProvider(fImage), rec, storage);
}

SkImage* SkImageShader::onIsAImage(SkMatrix* texM, TileMode xy[]) const {
    if (texM) {
        *texM = this->getLocalMatrix();
    }
    if (xy) {
        xy[0] = (TileMode)fTileModeX;
        xy[1] = (TileMode)fTileModeY;
    }
    return const_cast<SkImage*>(fImage.get());
}

bool SkImageShader::onIsABitmap(SkBitmap* texture, SkMatrix* texM, TileMode xy[]) const {
    const SkBitmap* bm = as_IB(fImage)->onPeekBitmap();
    if (!bm) {
        return false;
    }

    if (texture) {
        *texture = *bm;
    }
    if (texM) {
        *texM = this->getLocalMatrix();
    }
    if (xy) {
        xy[0] = (TileMode)fTileModeX;
        xy[1] = (TileMode)fTileModeY;
    }
    return true;
}

static bool bitmap_is_too_big(int w, int h) {
    // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it
    // communicates between its matrix-proc and its sampler-proc. Until we can
    // widen that, we have to reject bitmaps that are larger.
    //
    static const int kMaxSize = 65535;
    
    return w > kMaxSize || h > kMaxSize;
}

// returns true and set color if the bitmap can be drawn as a single color
// (for efficiency)
static bool can_use_color_shader(const SkImage* image, SkColor* color) {
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
    // HWUI does not support color shaders (see b/22390304)
    return false;
#endif
    
    if (1 != image->width() || 1 != image->height()) {
        return false;
    }
    
    SkPixmap pmap;
    if (!image->peekPixels(&pmap)) {
        return false;
    }
    
    switch (pmap.colorType()) {
        case kN32_SkColorType:
            *color = SkUnPreMultiply::PMColorToColor(*pmap.addr32(0, 0));
            return true;
        case kRGB_565_SkColorType:
            *color = SkPixel16ToColor(*pmap.addr16(0, 0));
            return true;
        case kIndex_8_SkColorType: {
            const SkColorTable& ctable = *pmap.ctable();
            *color = SkUnPreMultiply::PMColorToColor(ctable[*pmap.addr8(0, 0)]);
            return true;
        }
        default: // just skip the other configs for now
            break;
    }
    return false;
}

sk_sp<SkShader> SkImageShader::Make(const SkImage* image, TileMode tx, TileMode ty,
                                    const SkMatrix* localMatrix,
                                    SkTBlitterAllocator* allocator) {
    SkShader* shader;
    SkColor color;
    if (!image || bitmap_is_too_big(image->width(), image->height())) {
        if (nullptr == allocator) {
            shader = new SkEmptyShader;
        } else {
            shader = allocator->createT<SkEmptyShader>();
        }
    } else if (can_use_color_shader(image, &color)) {
        if (nullptr == allocator) {
            shader = new SkColorShader(color);
        } else {
            shader = allocator->createT<SkColorShader>(color);
        }
    } else {
        if (nullptr == allocator) {
            shader = new SkImageShader(image, tx, ty, localMatrix);
        } else {
            shader = allocator->createT<SkImageShader>(image, tx, ty, localMatrix);
        }
    }
    return sk_sp<SkShader>(shader);
}

#ifndef SK_IGNORE_TO_STRING
void SkImageShader::toString(SkString* str) const {
    const char* gTileModeName[SkShader::kTileModeCount] = {
        "clamp", "repeat", "mirror"
    };

    str->appendf("ImageShader: ((%s %s) ", gTileModeName[fTileModeX], gTileModeName[fTileModeY]);
    fImage->toString(str);
    this->INHERITED::toString(str);
    str->append(")");
}
#endif

///////////////////////////////////////////////////////////////////////////////////////////////////

#if SK_SUPPORT_GPU

#include "GrTextureAccess.h"
#include "SkGr.h"
#include "SkGrPriv.h"
#include "effects/GrSimpleTextureEffect.h"
#include "effects/GrBicubicEffect.h"
#include "effects/GrSimpleTextureEffect.h"

sk_sp<GrFragmentProcessor> SkImageShader::asFragmentProcessor(const AsFPArgs& args) const {
    SkMatrix matrix;
    matrix.setIDiv(fImage->width(), fImage->height());

    SkMatrix lmInverse;
    if (!this->getLocalMatrix().invert(&lmInverse)) {
        return nullptr;
    }
    if (args.fLocalMatrix) {
        SkMatrix inv;
        if (!args.fLocalMatrix->invert(&inv)) {
            return nullptr;
        }
        lmInverse.postConcat(inv);
    }
    matrix.preConcat(lmInverse);

    SkShader::TileMode tm[] = { fTileModeX, fTileModeY };

    // Must set wrap and filter on the sampler before requesting a texture. In two places below
    // we check the matrix scale factors to determine how to interpret the filter quality setting.
    // This completely ignores the complexity of the drawVertices case where explicit local coords
    // are provided by the caller.
    bool doBicubic;
    GrTextureParams::FilterMode textureFilterMode =
    GrSkFilterQualityToGrFilterMode(args.fFilterQuality, *args.fViewMatrix, this->getLocalMatrix(),
                                    &doBicubic);
    GrTextureParams params(tm, textureFilterMode);
    SkAutoTUnref<GrTexture> texture(as_IB(fImage)->asTextureRef(args.fContext, params,
                                                                args.fGammaTreatment));
    if (!texture) {
        return nullptr;
    }

    sk_sp<GrFragmentProcessor> inner;
    if (doBicubic) {
        inner = GrBicubicEffect::Make(texture, nullptr, matrix, tm);
    } else {
        inner = GrSimpleTextureEffect::Make(texture, nullptr, matrix, params);
    }

    if (GrPixelConfigIsAlphaOnly(texture->config())) {
        return inner;
    }
    return sk_sp<GrFragmentProcessor>(GrFragmentProcessor::MulOutputByInputAlpha(std::move(inner)));
}

#endif

///////////////////////////////////////////////////////////////////////////////////////////////////
#include "SkImagePriv.h"

sk_sp<SkShader> SkMakeBitmapShader(const SkBitmap& src, SkShader::TileMode tmx,
                                   SkShader::TileMode tmy, const SkMatrix* localMatrix,
                                   SkTBlitterAllocator* allocator) {
    ForceCopyMode mode = allocator ? kNever_ForceCopyMode : kNo_ForceCopyMode;
    return SkImageShader::Make(SkMakeImageFromRasterBitmap(src, mode).get(),
                               tmx, tmy, localMatrix, allocator);
}

static sk_sp<SkFlattenable> SkBitmapProcShader_CreateProc(SkReadBuffer& buffer) {
    SkMatrix lm;
    buffer.readMatrix(&lm);
    SkBitmap bm;
    if (!buffer.readBitmap(&bm)) {
        return nullptr;
    }
    bm.setImmutable();
    SkShader::TileMode mx = (SkShader::TileMode)buffer.readUInt();
    SkShader::TileMode my = (SkShader::TileMode)buffer.readUInt();
    return SkShader::MakeBitmapShader(bm, mx, my, &lm);
}

SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkShader)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkImageShader)
SkFlattenable::Register("SkBitmapProcShader", SkBitmapProcShader_CreateProc, kSkShader_Type);
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END