aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/vk/GrVkPipelineState.h
blob: c4ca4caf59b73c3e8db561cae95ea89753f5e758 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */


#ifndef GrVkPipelineState_DEFINED
#define GrVkPipelineState_DEFINED

#include "GrProgramDesc.h"
#include "GrStencilSettings.h"
#include "GrVkDescriptorSetManager.h"
#include "GrVkImage.h"
#include "GrVkPipelineStateDataManager.h"
#include "glsl/GrGLSLProgramBuilder.h"

#include "vk/GrVkDefines.h"

class GrPipeline;
class GrVkCommandBuffer;
class GrVkDescriptorPool;
class GrVkDescriptorSet;
class GrVkGpu;
class GrVkImageView;
class GrVkPipeline;
class GrVkSampler;
class GrVkUniformBuffer;

/**
 * This class holds onto a GrVkPipeline object that we use for draws. Besides storing the acutal
 * GrVkPipeline object, this class is also responsible handling all uniforms, descriptors, samplers,
 * and other similar objects that are used along with the VkPipeline in the draw. This includes both
 * allocating and freeing these objects, as well as updating their values.
 */
class GrVkPipelineState : public SkRefCnt {
public:
    typedef GrGLSLProgramBuilder::BuiltinUniformHandles BuiltinUniformHandles;

    ~GrVkPipelineState();

    GrVkPipeline* vkPipeline() const { return fPipeline; }

    void setData(GrVkGpu*, const GrPrimitiveProcessor&, const GrPipeline&);

    void bind(const GrVkGpu* gpu, GrVkCommandBuffer* commandBuffer);

    void addUniformResources(GrVkCommandBuffer&);

    void freeGPUResources(const GrVkGpu* gpu);

    // This releases resources that only a given instance of a GrVkPipelineState needs to hold onto
    // and don't need to survive across new uses of the GrVkPipelineState.
    void freeTempResources(const GrVkGpu* gpu);

    void abandonGPUResources();

    /**
     * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
     * the information needed to differentiate one pipeline from another.
     *
     * The GrProgramDesc contains all the information need to create the actual shaders for the
     * pipeline.
     *
     * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
     * pipline. This includes stencil settings, blending information, render pass format, draw face
     * information, and primitive type. Note that some state is set dynamically on the pipeline for
     * each draw  and thus is not included in this descriptor. This includes the viewport, scissor,
     * and blend constant.
     */
    class Desc : public GrProgramDesc {
    public:
        static bool Build(Desc*,
                          const GrPrimitiveProcessor&,
                          const GrPipeline&,
                          const GrStencilSettings&,
                          GrPrimitiveType primitiveType,
                          const GrShaderCaps&);
    private:
        typedef GrProgramDesc INHERITED;
    };

    const Desc& getDesc() { return fDesc; }

private:
    typedef GrVkPipelineStateDataManager::UniformInfoArray UniformInfoArray;
    typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;

    GrVkPipelineState(GrVkGpu* gpu,
                      const GrVkPipelineState::Desc&,
                      GrVkPipeline* pipeline,
                      VkPipelineLayout layout,
                      const GrVkDescriptorSetManager::Handle& samplerDSHandle,
                      const BuiltinUniformHandles& builtinUniformHandles,
                      const UniformInfoArray& uniforms,
                      uint32_t vertexUniformSize,
                      uint32_t fragmentUniformSize,
                      uint32_t numSamplers,
                      GrGLSLPrimitiveProcessor* geometryProcessor,
                      GrGLSLXferProcessor* xferProcessor,
                      const GrGLSLFragProcs& fragmentProcessors);

    // Each pool will manage one type of descriptor. Thus each descriptor set we use will all be of
    // one VkDescriptorType.
    struct DescriptorPoolManager {
        DescriptorPoolManager(VkDescriptorSetLayout layout, VkDescriptorType type,
                              uint32_t descCount, GrVkGpu* gpu)
            : fDescLayout(layout)
            , fDescType(type)
            , fDescCountPerSet(descCount)
            , fCurrentDescriptorCount(0)
            , fPool(nullptr) {
            SkASSERT(descCount < kMaxDescLimit >> 2);
            fMaxDescriptors = fDescCountPerSet << 2;
            this->getNewPool(gpu);
        }

        ~DescriptorPoolManager() {
            SkASSERT(!fDescLayout);
            SkASSERT(!fPool);
        }

        void getNewDescriptorSet(GrVkGpu* gpu, VkDescriptorSet* ds);

        void freeGPUResources(const GrVkGpu* gpu);
        void abandonGPUResources();

        VkDescriptorSetLayout  fDescLayout;
        VkDescriptorType       fDescType;
        uint32_t               fDescCountPerSet;
        uint32_t               fMaxDescriptors;
        uint32_t               fCurrentDescriptorCount;
        GrVkDescriptorPool*    fPool;

    private:
        static const uint32_t kMaxDescLimit = 1 << 10;

        void getNewPool(GrVkGpu* gpu);
    };

    void writeUniformBuffers(const GrVkGpu* gpu);

    void writeSamplers(GrVkGpu* gpu,
                       const SkTArray<const GrProcessor::TextureSampler*>& textureBindings,
                       bool allowSRGBInputs);

    /**
    * We use the RT's size and origin to adjust from Skia device space to vulkan normalized device
    * space and to make device space positions have the correct origin for processors that require
    * them.
    */
    struct RenderTargetState {
        SkISize         fRenderTargetSize;
        GrSurfaceOrigin fRenderTargetOrigin;

        RenderTargetState() { this->invalidate(); }
        void invalidate() {
            fRenderTargetSize.fWidth = -1;
            fRenderTargetSize.fHeight = -1;
            fRenderTargetOrigin = (GrSurfaceOrigin)-1;
        }

        /**
        * Gets a vec4 that adjusts the position from Skia device coords to Vulkans normalized device
        * coords. Assuming the transformed position, pos, is a homogeneous vec3, the vec, v, is
        * applied as such:
        * pos.x = dot(v.xy, pos.xz)
        * pos.y = dot(v.zw, pos.yz)
        */
        void getRTAdjustmentVec(float* destVec) {
            destVec[0] = 2.f / fRenderTargetSize.fWidth;
            destVec[1] = -1.f;
            if (kBottomLeft_GrSurfaceOrigin == fRenderTargetOrigin) {
                destVec[2] = -2.f / fRenderTargetSize.fHeight;
                destVec[3] = 1.f;
            } else {
                destVec[2] = 2.f / fRenderTargetSize.fHeight;
                destVec[3] = -1.f;
            }
        }
    };

    // Helper for setData() that sets the view matrix and loads the render target height uniform
    void setRenderTargetState(const GrRenderTarget*);

    // GrVkResources
    GrVkPipeline* fPipeline;

    // Used for binding DescriptorSets to the command buffer but does not need to survive during
    // command buffer execution. Thus this is not need to be a GrVkResource.
    VkPipelineLayout fPipelineLayout;

    // The DescriptorSets need to survive until the gpu has finished all draws that use them.
    // However, they will only be freed by the descriptor pool. Thus by simply keeping the
    // descriptor pool alive through the draw, the descritor sets will also stay alive. Thus we do
    // not need a GrVkResource versions of VkDescriptorSet. We hold on to these in the
    // GrVkPipelineState since we update the descriptor sets and bind them at separate times;
    VkDescriptorSet fDescriptorSets[2];

    // Once we move samplers over to use the resource provider for descriptor sets we will not need
    // the above array and instead just use GrVkDescriptorSet like the uniform one here.
    const GrVkDescriptorSet* fUniformDescriptorSet;
    const GrVkDescriptorSet* fSamplerDescriptorSet;

    const GrVkDescriptorSetManager::Handle fSamplerDSHandle;

    // Meta data so we know which descriptor sets we are using and need to bind.
    int fStartDS;
    int fDSCount;

    std::unique_ptr<GrVkUniformBuffer> fVertexUniformBuffer;
    std::unique_ptr<GrVkUniformBuffer> fFragmentUniformBuffer;

    // GrVkResources used for sampling textures
    SkTDArray<GrVkSampler*> fSamplers;
    SkTDArray<const GrVkImageView*> fTextureViews;
    SkTDArray<const GrVkResource*> fTextures;

    // Tracks the current render target uniforms stored in the vertex buffer.
    RenderTargetState fRenderTargetState;
    BuiltinUniformHandles fBuiltinUniformHandles;

    // Processors in the GrVkPipelineState
    std::unique_ptr<GrGLSLPrimitiveProcessor> fGeometryProcessor;
    std::unique_ptr<GrGLSLXferProcessor> fXferProcessor;
    GrGLSLFragProcs fFragmentProcessors;

    Desc fDesc;

    GrVkPipelineStateDataManager fDataManager;

    int fNumSamplers;

    friend class GrVkPipelineStateBuilder;
};

#endif