aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/vk/GrVkCaps.cpp
blob: 602e9e14e7832bbd01361f74bd572466ee61999f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/*
 * Copyright 2015 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrVkCaps.h"
#include "GrBackendSurface.h"
#include "GrRenderTargetProxy.h"
#include "GrRenderTarget.h"
#include "GrShaderCaps.h"
#include "GrVkUtil.h"
#include "vk/GrVkBackendContext.h"
#include "vk/GrVkInterface.h"

GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
                   VkPhysicalDevice physDev, uint32_t featureFlags, uint32_t extensionFlags)
    : INHERITED(contextOptions) {
    fCanUseGLSLForShaderModule = false;
    fMustDoCopiesFromOrigin = false;
    fMustSubmitCommandsBeforeCopyOp = false;
    fMustSleepOnTearDown  = false;
    fNewCBOnPipelineChange = false;
    fCanUseWholeSizeOnFlushMappedMemory = true;

    /**************************************************************************
    * GrDrawTargetCaps fields
    **************************************************************************/
    fMipMapSupport = true;   // always available in Vulkan
    fSRGBSupport = true;   // always available in Vulkan
    fNPOTTextureTileSupport = true;  // always available in Vulkan
    fDiscardRenderTargetSupport = true;
    fReuseScratchTextures = true; //TODO: figure this out
    fGpuTracingSupport = false; //TODO: figure this out
    fOversizedStencilSupport = false; //TODO: figure this out
    fInstanceAttribSupport = true;

    fBlacklistCoverageCounting = true; // blacklisting ccpr until we work through a few issues.
    fFenceSyncSupport = true;   // always available in Vulkan
    fCrossContextTextureSupport = true;

    fMapBufferFlags = kNone_MapFlags; //TODO: figure this out
    fBufferMapThreshold = SK_MaxS32;  //TODO: figure this out

    fMaxRenderTargetSize = 4096; // minimum required by spec
    fMaxTextureSize = 4096; // minimum required by spec

    fShaderCaps.reset(new GrShaderCaps(contextOptions));

    this->init(contextOptions, vkInterface, physDev, featureFlags, extensionFlags);
}

bool GrVkCaps::initDescForDstCopy(const GrRenderTargetProxy* src, GrSurfaceDesc* desc,
                                  GrSurfaceOrigin* origin, bool* rectsMustMatch,
                                  bool* disallowSubrect) const {
    // Vk doesn't use rectsMustMatch or disallowSubrect. Always return false.
    *rectsMustMatch = false;
    *disallowSubrect = false;

    // We can always succeed here with either a CopyImage (none msaa src) or ResolveImage (msaa).
    // For CopyImage we can make a simple texture, for ResolveImage we require the dst to be a
    // render target as well.
    *origin = src->origin();
    desc->fConfig = src->config();
    if (src->numColorSamples() > 1 || src->asTextureProxy()) {
        desc->fFlags = kRenderTarget_GrSurfaceFlag;
    } else {
        // Just going to use CopyImage here
        desc->fFlags = kNone_GrSurfaceFlags;
    }

    return true;
}

bool GrVkCaps::canCopyImage(GrPixelConfig dstConfig, int dstSampleCnt, GrSurfaceOrigin dstOrigin,
                            GrPixelConfig srcConfig, int srcSampleCnt,
                            GrSurfaceOrigin srcOrigin) const {
    if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
        return false;
    }

    // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
    // as image usage flags.
    if (srcOrigin != dstOrigin || GrBytesPerPixel(srcConfig) != GrBytesPerPixel(dstConfig)) {
        return false;
    }

    if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
        this->shaderCaps()->configOutputSwizzle(dstConfig)) {
        return false;
    }

    return true;
}

bool GrVkCaps::canCopyAsBlit(GrPixelConfig dstConfig, int dstSampleCnt, bool dstIsLinear,
                             GrPixelConfig srcConfig, int srcSampleCnt, bool srcIsLinear) const {
    // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
    // as image usage flags.
    if (!this->configCanBeDstofBlit(dstConfig, dstIsLinear) ||
        !this->configCanBeSrcofBlit(srcConfig, srcIsLinear)) {
        return false;
    }

    if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
        this->shaderCaps()->configOutputSwizzle(dstConfig)) {
        return false;
    }

    // We cannot blit images that are multisampled. Will need to figure out if we can blit the
    // resolved msaa though.
    if (dstSampleCnt > 1 || srcSampleCnt > 1) {
        return false;
    }

    return true;
}

bool GrVkCaps::canCopyAsResolve(GrPixelConfig dstConfig, int dstSampleCnt,
                                GrSurfaceOrigin dstOrigin, GrPixelConfig srcConfig,
                                int srcSampleCnt, GrSurfaceOrigin srcOrigin) const {
    // The src surface must be multisampled.
    if (srcSampleCnt <= 1) {
        return false;
    }

    // The dst must not be multisampled.
    if (dstSampleCnt > 1) {
        return false;
    }

    // Surfaces must have the same format.
    if (dstConfig != srcConfig) {
        return false;
    }

    // Surfaces must have the same origin.
    if (srcOrigin != dstOrigin) {
        return false;
    }

    return true;
}

bool GrVkCaps::canCopyAsDraw(GrPixelConfig dstConfig, bool dstIsRenderable,
                             GrPixelConfig srcConfig, bool srcIsTextureable) const {
    // TODO: Make copySurfaceAsDraw handle the swizzle
    if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
        this->shaderCaps()->configOutputSwizzle(dstConfig)) {
        return false;
    }

    // Make sure the dst is a render target and the src is a texture.
    if (!dstIsRenderable || !srcIsTextureable) {
        return false;
    }

    return true;
}

bool GrVkCaps::canCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
                              const SkIRect& srcRect, const SkIPoint& dstPoint) const {
    GrSurfaceOrigin dstOrigin = dst->origin();
    GrSurfaceOrigin srcOrigin = src->origin();

    GrPixelConfig dstConfig = dst->config();
    GrPixelConfig srcConfig = src->config();

    // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
    // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
    // tracking of external or rectangle textures in GL? For now we don't create linear textures
    // internally, and I don't believe anyone is wrapping them.
    bool srcIsLinear = false;
    bool dstIsLinear = false;

    int dstSampleCnt = 0;
    int srcSampleCnt = 0;
    if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
        dstSampleCnt = rtProxy->numColorSamples();
    }
    if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
        srcSampleCnt = rtProxy->numColorSamples();
    }
    SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
    SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));

    return this->canCopyImage(dstConfig, dstSampleCnt, dstOrigin,
                              srcConfig, srcSampleCnt, srcOrigin) ||
           this->canCopyAsBlit(dstConfig, dstSampleCnt, dstIsLinear,
                               srcConfig, srcSampleCnt, srcIsLinear) ||
           this->canCopyAsResolve(dstConfig, dstSampleCnt, dstOrigin,
                                  srcConfig, srcSampleCnt, srcOrigin) ||
           this->canCopyAsDraw(dstConfig, dstSampleCnt > 0,
                               srcConfig, SkToBool(src->asTextureProxy()));
}

void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
                    VkPhysicalDevice physDev, uint32_t featureFlags, uint32_t extensionFlags) {

    VkPhysicalDeviceProperties properties;
    GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));

    VkPhysicalDeviceMemoryProperties memoryProperties;
    GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));

    this->initGrCaps(properties, memoryProperties, featureFlags);
    this->initShaderCaps(properties, featureFlags);

    if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
#if defined(SK_CPU_X86)
        // We need to do this before initing the config table since it uses fSRGBSupport
        if (kImagination_VkVendor == properties.vendorID) {
            fSRGBSupport = false;
        }
#endif
    }

    this->initConfigTable(vkInterface, physDev, properties);
    this->initStencilFormat(vkInterface, physDev);

    if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
        this->applyDriverCorrectnessWorkarounds(properties);
    }

    this->applyOptionsOverrides(contextOptions);
    fShaderCaps->applyOptionsOverrides(contextOptions);
}

void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
    if (kQualcomm_VkVendor == properties.vendorID) {
        fMustDoCopiesFromOrigin = true;
    }

    if (kNvidia_VkVendor == properties.vendorID) {
        fMustSubmitCommandsBeforeCopyOp = true;
    }

#if defined(SK_BUILD_FOR_WIN)
    if (kNvidia_VkVendor == properties.vendorID) {
        fMustSleepOnTearDown = true;
    }
#elif defined(SK_BUILD_FOR_ANDROID)
    if (kImagination_VkVendor == properties.vendorID) {
        fMustSleepOnTearDown = true;
    }
#endif

    // AMD seems to have issues binding new VkPipelines inside a secondary command buffer.
    // Current workaround is to use a different secondary command buffer for each new VkPipeline.
    if (kAMD_VkVendor == properties.vendorID) {
        fNewCBOnPipelineChange = true;
    }

    ////////////////////////////////////////////////////////////////////////////
    // GrCaps workarounds
    ////////////////////////////////////////////////////////////////////////////

    if (kARM_VkVendor == properties.vendorID) {
        fInstanceAttribSupport = false;
    }

    // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
    if (kAMD_VkVendor == properties.vendorID) {
        fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32);
    }

    if (kIntel_VkVendor == properties.vendorID) {
        fCanUseWholeSizeOnFlushMappedMemory = false;
    }

    ////////////////////////////////////////////////////////////////////////////
    // GrShaderCaps workarounds
    ////////////////////////////////////////////////////////////////////////////

    if (kImagination_VkVendor == properties.vendorID) {
        fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
    }

}

int get_max_sample_count(VkSampleCountFlags flags) {
    SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT);
    if (!(flags & VK_SAMPLE_COUNT_2_BIT)) {
        return 0;
    }
    if (!(flags & VK_SAMPLE_COUNT_4_BIT)) {
        return 2;
    }
    if (!(flags & VK_SAMPLE_COUNT_8_BIT)) {
        return 4;
    }
    if (!(flags & VK_SAMPLE_COUNT_16_BIT)) {
        return 8;
    }
    if (!(flags & VK_SAMPLE_COUNT_32_BIT)) {
        return 16;
    }
    if (!(flags & VK_SAMPLE_COUNT_64_BIT)) {
        return 32;
    }
    return 64;
}

void GrVkCaps::initGrCaps(const VkPhysicalDeviceProperties& properties,
                          const VkPhysicalDeviceMemoryProperties& memoryProperties,
                          uint32_t featureFlags) {
    // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
    // need for us ever to support that amount, and it makes tests which tests all the vertex
    // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
    // we ever find that need.
    static const uint32_t kMaxVertexAttributes = 64;
    fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);

    // We could actually query and get a max size for each config, however maxImageDimension2D will
    // give the minimum max size across all configs. So for simplicity we will use that for now.
    fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
    fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
    if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
        fMaxTextureSize = SkTMin(fMaxTextureSize, 4096);
    }
    // Our render targets are always created with textures as the color
    // attachment, hence this min:
    fMaxRenderTargetSize = SkTMin(fMaxTextureSize, fMaxRenderTargetSize);

    // TODO: check if RT's larger than 4k incur a performance cost on ARM.
    fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;

    // Assuming since we will always map in the end to upload the data we might as well just map
    // from the get go. There is no hard data to suggest this is faster or slower.
    fBufferMapThreshold = 0;

    fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag;

    fOversizedStencilSupport = true;
    fSampleShadingSupport = SkToBool(featureFlags & kSampleRateShading_GrVkFeatureFlag);


}

void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties, uint32_t featureFlags) {
    GrShaderCaps* shaderCaps = fShaderCaps.get();
    shaderCaps->fVersionDeclString = "#version 330\n";


    // fConfigOutputSwizzle will default to RGBA so we only need to set it for alpha only config.
    for (int i = 0; i < kGrPixelConfigCnt; ++i) {
        GrPixelConfig config = static_cast<GrPixelConfig>(i);
        // Vulkan doesn't support a single channel format stored in alpha.
        if (GrPixelConfigIsAlphaOnly(config) &&
            kAlpha_8_as_Alpha_GrPixelConfig != config) {
            shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRR();
            shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::AAAA();
        } else {
            if (kGray_8_GrPixelConfig == config ||
                kGray_8_as_Red_GrPixelConfig == config) {
                shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRA();
            } else if (kRGBA_4444_GrPixelConfig == config) {
                // The vulkan spec does not require R4G4B4A4 to be supported for texturing so we
                // store the data in a B4G4R4A4 texture and then swizzle it when doing texture reads
                // or writing to outputs. Since we're not actually changing the data at all, the
                // only extra work is the swizzle in the shader for all operations.
                shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::BGRA();
                shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::BGRA();
            } else {
                shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RGBA();
            }
        }
    }

    // Vulkan is based off ES 3.0 so the following should all be supported
    shaderCaps->fUsesPrecisionModifiers = true;
    shaderCaps->fFlatInterpolationSupport = true;
    // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
    // to be true with Vulkan as well.
    shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;

    // GrShaderCaps

    shaderCaps->fShaderDerivativeSupport = true;

    shaderCaps->fGeometryShaderSupport = SkToBool(featureFlags & kGeometryShader_GrVkFeatureFlag);
    shaderCaps->fGSInvocationsSupport = shaderCaps->fGeometryShaderSupport;

    shaderCaps->fDualSourceBlendingSupport = SkToBool(featureFlags & kDualSrcBlend_GrVkFeatureFlag);

    shaderCaps->fIntegerSupport = true;
    shaderCaps->fTexelBufferSupport = true;
    shaderCaps->fTexelFetchSupport = true;
    shaderCaps->fVertexIDSupport = true;
    shaderCaps->fFPManipulationSupport = true;

    // Assume the minimum precisions mandated by the SPIR-V spec.
    shaderCaps->fFloatIs32Bits = true;
    shaderCaps->fHalfIs32Bits = false;

    shaderCaps->fMaxVertexSamplers =
    shaderCaps->fMaxGeometrySamplers =
    shaderCaps->fMaxFragmentSamplers = SkTMin(
                                       SkTMin(properties.limits.maxPerStageDescriptorSampledImages,
                                              properties.limits.maxPerStageDescriptorSamplers),
                                              (uint32_t)INT_MAX);
    shaderCaps->fMaxCombinedSamplers = SkTMin(
                                       SkTMin(properties.limits.maxDescriptorSetSampledImages,
                                              properties.limits.maxDescriptorSetSamplers),
                                              (uint32_t)INT_MAX);
}

bool stencil_format_supported(const GrVkInterface* interface,
                              VkPhysicalDevice physDev,
                              VkFormat format) {
    VkFormatProperties props;
    memset(&props, 0, sizeof(VkFormatProperties));
    GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
    return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
}

void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
    // List of legal stencil formats (though perhaps not supported on
    // the particular gpu/driver) from most preferred to least. We are guaranteed to have either
    // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT
    // can optionally have 24 unused bits at the end so we assume the total bits is 64.
    static const StencilFormat
                  // internal Format             stencil bits      total bits        packed?
        gS8    = { VK_FORMAT_S8_UINT,            8,                 8,               false },
        gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT,  8,                32,               true },
        gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8,                64,               true };

    if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
        fPreferedStencilFormat = gS8;
    } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
        fPreferedStencilFormat = gD24S8;
    } else {
        SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
        fPreferedStencilFormat = gD32S8;
    }
}

void GrVkCaps::initConfigTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
                               const VkPhysicalDeviceProperties& properties) {
    for (int i = 0; i < kGrPixelConfigCnt; ++i) {
        VkFormat format;
        if (GrPixelConfigToVkFormat(static_cast<GrPixelConfig>(i), &format)) {
            if (!GrPixelConfigIsSRGB(static_cast<GrPixelConfig>(i)) || fSRGBSupport) {
                fConfigTable[i].init(interface, physDev, properties, format);
            }
        }
    }
}

void GrVkCaps::ConfigInfo::InitConfigFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
    if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
        SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
        *flags = *flags | kTextureable_Flag;

        // Ganesh assumes that all renderable surfaces are also texturable
        if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
            *flags = *flags | kRenderable_Flag;
        }
    }

    if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
        *flags = *flags | kBlitSrc_Flag;
    }

    if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
        *flags = *flags | kBlitDst_Flag;
    }
}

void GrVkCaps::ConfigInfo::initSampleCounts(const GrVkInterface* interface,
                                            VkPhysicalDevice physDev,
                                            const VkPhysicalDeviceProperties& physProps,
                                            VkFormat format) {
    VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
                              VK_IMAGE_USAGE_TRANSFER_DST_BIT |
                              VK_IMAGE_USAGE_SAMPLED_BIT |
                              VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
    VkImageFormatProperties properties;
    GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
                                                                 format,
                                                                 VK_IMAGE_TYPE_2D,
                                                                 VK_IMAGE_TILING_OPTIMAL,
                                                                 usage,
                                                                 0,  // createFlags
                                                                 &properties));
    VkSampleCountFlags flags = properties.sampleCounts;
    if (flags & VK_SAMPLE_COUNT_1_BIT) {
        fColorSampleCounts.push(1);
    }
    if (kImagination_VkVendor == physProps.vendorID) {
        // MSAA does not work on imagination
        return;
    }
    if (flags & VK_SAMPLE_COUNT_2_BIT) {
        fColorSampleCounts.push(2);
    }
    if (flags & VK_SAMPLE_COUNT_4_BIT) {
        fColorSampleCounts.push(4);
    }
    if (flags & VK_SAMPLE_COUNT_8_BIT) {
        fColorSampleCounts.push(8);
    }
    if (flags & VK_SAMPLE_COUNT_16_BIT) {
        fColorSampleCounts.push(16);
    }
    if (flags & VK_SAMPLE_COUNT_32_BIT) {
        fColorSampleCounts.push(32);
    }
    if (flags & VK_SAMPLE_COUNT_64_BIT) {
        fColorSampleCounts.push(64);
    }
}

void GrVkCaps::ConfigInfo::init(const GrVkInterface* interface,
                                VkPhysicalDevice physDev,
                                const VkPhysicalDeviceProperties& properties,
                                VkFormat format) {
    VkFormatProperties props;
    memset(&props, 0, sizeof(VkFormatProperties));
    GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
    InitConfigFlags(props.linearTilingFeatures, &fLinearFlags);
    InitConfigFlags(props.optimalTilingFeatures, &fOptimalFlags);
    if (fOptimalFlags & kRenderable_Flag) {
        this->initSampleCounts(interface, physDev, properties, format);
    }
}

int GrVkCaps::getRenderTargetSampleCount(int requestedCount, GrPixelConfig config) const {
    requestedCount = SkTMax(1, requestedCount);
    int count = fConfigTable[config].fColorSampleCounts.count();

    if (!count) {
        return 0;
    }

    if (1 == requestedCount) {
        SkASSERT(fConfigTable[config].fColorSampleCounts.count() &&
                 fConfigTable[config].fColorSampleCounts[0] == 1);
        return 1;
    }

    for (int i = 0; i < count; ++i) {
        if (fConfigTable[config].fColorSampleCounts[i] >= requestedCount) {
            return fConfigTable[config].fColorSampleCounts[i];
        }
    }
    return 0;
}

int GrVkCaps::maxRenderTargetSampleCount(GrPixelConfig config) const {
    const auto& table = fConfigTable[config].fColorSampleCounts;
    if (!table.count()) {
        return 0;
    }
    return table[table.count() - 1];
}

bool GrVkCaps::surfaceSupportsWritePixels(const GrSurface* surface) const {
    if (auto rt = surface->asRenderTarget()) {
        return rt->numColorSamples() <= 1 && SkToBool(surface->asTexture());
    }
    return true;
}

bool validate_image_info(VkFormat format, SkColorType ct, GrPixelConfig* config) {
    *config = kUnknown_GrPixelConfig;

    switch (ct) {
        case kUnknown_SkColorType:
            return false;
        case kAlpha_8_SkColorType:
            if (VK_FORMAT_R8_UNORM == format) {
                *config = kAlpha_8_as_Red_GrPixelConfig;
            }
            break;
        case kRGB_565_SkColorType:
            if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) {
                *config = kRGB_565_GrPixelConfig;
            }
            break;
        case kARGB_4444_SkColorType:
            if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format) {
                *config = kRGBA_4444_GrPixelConfig;
            }
            break;
        case kRGBA_8888_SkColorType:
            if (VK_FORMAT_R8G8B8A8_UNORM == format) {
                *config = kRGBA_8888_GrPixelConfig;
            } else if (VK_FORMAT_R8G8B8A8_SRGB == format) {
                *config = kSRGBA_8888_GrPixelConfig;
            }
            break;
        case kRGB_888x_SkColorType:
            // TODO: VK_FORMAT_R8G8B8_UNORM
            return false;
        case kBGRA_8888_SkColorType:
            if (VK_FORMAT_B8G8R8A8_UNORM == format) {
                *config = kBGRA_8888_GrPixelConfig;
            } else if (VK_FORMAT_B8G8R8A8_SRGB == format) {
                *config = kSBGRA_8888_GrPixelConfig;
            }
            break;
        case kRGBA_1010102_SkColorType:
            if (VK_FORMAT_A2B10G10R10_UNORM_PACK32 == format) {
                *config = kRGBA_1010102_GrPixelConfig;
            }
            break;
        case kRGB_101010x_SkColorType:
            return false;
        case kGray_8_SkColorType:
            if (VK_FORMAT_R8_UNORM == format) {
                *config = kGray_8_as_Red_GrPixelConfig;
            }
            break;
        case kRGBA_F16_SkColorType:
            if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
                *config = kRGBA_half_GrPixelConfig;
            }
            break;
    }

    return kUnknown_GrPixelConfig != *config;
}

bool GrVkCaps::validateBackendTexture(const GrBackendTexture& tex, SkColorType ct,
                                      GrPixelConfig* config) const {
    GrVkImageInfo imageInfo;
    if (!tex.getVkImageInfo(&imageInfo)) {
        return false;
    }

    return validate_image_info(imageInfo.fFormat, ct, config);
}

bool GrVkCaps::validateBackendRenderTarget(const GrBackendRenderTarget& rt, SkColorType ct,
                                           GrPixelConfig* config) const {
    GrVkImageInfo imageInfo;
    if (!rt.getVkImageInfo(&imageInfo)) {
        return false;
    }

    return validate_image_info(imageInfo.fFormat, ct, config);
}

bool GrVkCaps::getConfigFromBackendFormat(const GrBackendFormat& format, SkColorType ct,
                                          GrPixelConfig* config) const {
    const VkFormat* vkFormat = format.getVkFormat();
    if (!vkFormat) {
        return false;
    }
    return validate_image_info(*vkFormat, ct, config);
}