aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/vk/GrVkAMDMemoryAllocator.cpp
blob: 21a35bc0e50e28b2e1f766917a5f0219e75c802c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
 * Copyright 2018 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrVkAMDMemoryAllocator.h"

#include "vk/GrVkInterface.h"
#include "GrVkMemory.h"
#include "GrVkUtil.h"

GrVkAMDMemoryAllocator::GrVkAMDMemoryAllocator(VkPhysicalDevice physicalDevice,
                                               VkDevice device,
                                               sk_sp<const GrVkInterface> interface)
        : fAllocator(VK_NULL_HANDLE)
        , fInterface(std::move(interface))
        , fDevice(device) {
#define GR_COPY_FUNCTION(NAME) functions.vk##NAME = fInterface->fFunctions.f##NAME;

    VmaVulkanFunctions functions;
    GR_COPY_FUNCTION(GetPhysicalDeviceProperties);
    GR_COPY_FUNCTION(GetPhysicalDeviceMemoryProperties);
    GR_COPY_FUNCTION(AllocateMemory);
    GR_COPY_FUNCTION(FreeMemory);
    GR_COPY_FUNCTION(MapMemory);
    GR_COPY_FUNCTION(UnmapMemory);
    GR_COPY_FUNCTION(BindBufferMemory);
    GR_COPY_FUNCTION(BindImageMemory);
    GR_COPY_FUNCTION(GetBufferMemoryRequirements);
    GR_COPY_FUNCTION(GetImageMemoryRequirements);
    GR_COPY_FUNCTION(CreateBuffer);
    GR_COPY_FUNCTION(DestroyBuffer);
    GR_COPY_FUNCTION(CreateImage);
    GR_COPY_FUNCTION(DestroyImage);

    // Skia current doesn't support VK_KHR_dedicated_allocation
    functions.vkGetBufferMemoryRequirements2KHR = nullptr;
    functions.vkGetImageMemoryRequirements2KHR = nullptr;

    VmaAllocatorCreateInfo info;
    info.flags = 0;
    info.physicalDevice = physicalDevice;
    info.device = device;
    // Manually testing runs of dm using 64 here instead of the default 256 shows less memory usage
    // on average. Also dm seems to run faster using 64 so it doesn't seem to be trading off speed
    // for memory.
    info.preferredLargeHeapBlockSize = 64*1024*1024;
    info.pAllocationCallbacks = nullptr;
    info.pDeviceMemoryCallbacks = nullptr;
    info.frameInUseCount = 0;
    info.pHeapSizeLimit = nullptr;
    info.pVulkanFunctions = &functions;

    vmaCreateAllocator(&info, &fAllocator);
}

GrVkAMDMemoryAllocator::~GrVkAMDMemoryAllocator() {
    vmaDestroyAllocator(fAllocator);
    fAllocator = VK_NULL_HANDLE;
}

bool GrVkAMDMemoryAllocator::allocateMemoryForImage(VkImage image, AllocationPropertyFlags flags,
                                                    GrVkBackendMemory* backendMemory) {
    VmaAllocationCreateInfo info;
    info.flags = 0;
    info.usage = VMA_MEMORY_USAGE_UNKNOWN;
    info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
    info.preferredFlags = 0;
    info.memoryTypeBits = 0;
    info.pool = VK_NULL_HANDLE;
    info.pUserData = nullptr;

    if (AllocationPropertyFlags::kDedicatedAllocation & flags) {
        info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
    }

    if (AllocationPropertyFlags::kLazyAllocation & flags) {
        info.preferredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
    }

    VmaAllocation allocation;
    VkResult result = vmaAllocateMemoryForImage(fAllocator, image, &info, &allocation, nullptr);
    if (VK_SUCCESS != result) {
        return false;
    }
    *backendMemory = (GrVkBackendMemory)allocation;
    return true;
}

bool GrVkAMDMemoryAllocator::allocateMemoryForBuffer(VkBuffer buffer, BufferUsage usage,
                                                     AllocationPropertyFlags flags,
                                                     GrVkBackendMemory* backendMemory) {
    VmaAllocationCreateInfo info;
    info.flags = 0;
    info.usage = VMA_MEMORY_USAGE_UNKNOWN;
    info.memoryTypeBits = 0;
    info.pool = VK_NULL_HANDLE;
    info.pUserData = nullptr;

    switch (usage) {
        case BufferUsage::kGpuOnly:
            info.requiredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
            info.preferredFlags = 0;
            break;
        case BufferUsage::kCpuOnly:
            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
                                 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
            info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
            break;
        case BufferUsage::kCpuWritesGpuReads:
            // First attempt to try memory is also cached
            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
                                 VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
            info.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
            break;
        case BufferUsage::kGpuWritesCpuReads:
            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
            info.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
                                  VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
            break;
    }

    if (AllocationPropertyFlags::kDedicatedAllocation & flags) {
        info.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
    }

    if ((AllocationPropertyFlags::kLazyAllocation & flags) && BufferUsage::kGpuOnly == usage) {
        info.preferredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
    }

    if (AllocationPropertyFlags::kPersistentlyMapped & flags) {
        SkASSERT(BufferUsage::kGpuOnly != usage);
        info.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
    }

    VmaAllocation allocation;
    VkResult result = vmaAllocateMemoryForBuffer(fAllocator, buffer, &info, &allocation, nullptr);
    if (VK_SUCCESS != result) {
        if (usage == BufferUsage::kCpuWritesGpuReads) {
            // We try again but this time drop the requirement for cached
            info.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
            result = vmaAllocateMemoryForBuffer(fAllocator, buffer, &info, &allocation, nullptr);
        }
    }
    if (VK_SUCCESS != result) {
        return false;
    }

    *backendMemory = (GrVkBackendMemory)allocation;
    return true;
}

void GrVkAMDMemoryAllocator::freeMemory(const GrVkBackendMemory& memoryHandle) {
    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
    vmaFreeMemory(fAllocator, allocation);
}

void GrVkAMDMemoryAllocator::getAllocInfo(const GrVkBackendMemory& memoryHandle,
                                          GrVkAlloc* alloc) const {
    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
    VmaAllocationInfo vmaInfo;
    vmaGetAllocationInfo(fAllocator, allocation, &vmaInfo);

    VkMemoryPropertyFlags memFlags;
    vmaGetMemoryTypeProperties(fAllocator, vmaInfo.memoryType, &memFlags);

    uint32_t flags = 0;
    if (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT & memFlags) {
        flags |= GrVkAlloc::kMappable_Flag;
    }
    if (!SkToBool(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT & memFlags)) {
        flags |= GrVkAlloc::kNoncoherent_Flag;
    }

    alloc->fMemory        = vmaInfo.deviceMemory;
    alloc->fOffset        = vmaInfo.offset;
    alloc->fSize          = vmaInfo.size;
    alloc->fFlags         = flags;
    alloc->fBackendMemory = memoryHandle;

    // TODO: Remove this hack once the AMD allocator is able to handle the alignment of noncoherent
    // memory itself.
    if (!SkToBool(VK_MEMORY_PROPERTY_HOST_COHERENT_BIT & memFlags)) {
        // This is a hack to say that the allocation size is actually larger than it is. This is to
        // make sure when we are flushing and invalidating noncoherent memory we have a size that is
        // aligned to the nonCoherentAtomSize. This is safe for three reasons. First the total size
        // of the VkDeviceMemory we allocate will always be a multple of the max possible alignment
        // (currently 256). Second all sub allocations are alignmed with an offset of 256. And
        // finally the allocator we are using always maps the entire VkDeviceMemory so the range
        // we'll be flushing/invalidating will be mapped. So our new fake allocation size will
        // always fit into the VkDeviceMemory, will never push it into another suballocation, and
        // will always be mapped when map is called.
        const VkPhysicalDeviceProperties* devProps;
        vmaGetPhysicalDeviceProperties(fAllocator, &devProps);
        VkDeviceSize alignment = devProps->limits.nonCoherentAtomSize;

        alloc->fSize = (alloc->fSize + alignment - 1) & ~(alignment -1);
    }
}

void* GrVkAMDMemoryAllocator::mapMemory(const GrVkBackendMemory& memoryHandle) {
    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
    void* mapPtr;
    vmaMapMemory(fAllocator, allocation, &mapPtr);
    return mapPtr;
}

void GrVkAMDMemoryAllocator::unmapMemory(const GrVkBackendMemory& memoryHandle) {
    const VmaAllocation allocation = (const VmaAllocation)memoryHandle;
    vmaUnmapMemory(fAllocator, allocation);
}

void GrVkAMDMemoryAllocator::flushMappedMemory(const GrVkBackendMemory& memoryHandle,
                                               VkDeviceSize offset, VkDeviceSize size) {
    GrVkAlloc info;
    this->getAllocInfo(memoryHandle, &info);

    if (GrVkAlloc::kNoncoherent_Flag & info.fFlags) {
        // We need to store the nonCoherentAtomSize for non-coherent flush/invalidate alignment.
        const VkPhysicalDeviceProperties* physDevProps;
        vmaGetPhysicalDeviceProperties(fAllocator, &physDevProps);
        VkDeviceSize alignment = physDevProps->limits.nonCoherentAtomSize;

        VkMappedMemoryRange mappedMemoryRange;
        GrVkMemory::GetNonCoherentMappedMemoryRange(info, offset, size, alignment,
                                                    &mappedMemoryRange);
        GR_VK_CALL(fInterface, FlushMappedMemoryRanges(fDevice, 1, &mappedMemoryRange));
    }
}

void GrVkAMDMemoryAllocator::invalidateMappedMemory(const GrVkBackendMemory& memoryHandle,
                                                    VkDeviceSize offset, VkDeviceSize size) {
    GrVkAlloc info;
    this->getAllocInfo(memoryHandle, &info);

    if (GrVkAlloc::kNoncoherent_Flag & info.fFlags) {
        // We need to store the nonCoherentAtomSize for non-coherent flush/invalidate alignment.
        const VkPhysicalDeviceProperties* physDevProps;
        vmaGetPhysicalDeviceProperties(fAllocator, &physDevProps);
        VkDeviceSize alignment = physDevProps->limits.nonCoherentAtomSize;

        VkMappedMemoryRange mappedMemoryRange;
        GrVkMemory::GetNonCoherentMappedMemoryRange(info, offset, size, alignment,
                                                    &mappedMemoryRange);
        GR_VK_CALL(fInterface, InvalidateMappedMemoryRanges(fDevice, 1, &mappedMemoryRange));
    }
}

uint64_t GrVkAMDMemoryAllocator::totalUsedMemory() const {
    VmaStats stats;
    vmaCalculateStats(fAllocator, &stats);
    return stats.total.usedBytes;
}

uint64_t GrVkAMDMemoryAllocator::totalAllocatedMemory() const {
    VmaStats stats;
    vmaCalculateStats(fAllocator, &stats);
    return stats.total.usedBytes + stats.total.unusedBytes;
}