1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrTextureOp.h"
#include "GrAppliedClip.h"
#include "GrCaps.h"
#include "GrDrawOpTest.h"
#include "GrGeometryProcessor.h"
#include "GrMeshDrawOp.h"
#include "GrOpFlushState.h"
#include "GrQuad.h"
#include "GrResourceProvider.h"
#include "GrShaderCaps.h"
#include "GrTexture.h"
#include "GrTexturePriv.h"
#include "GrTextureProxy.h"
#include "SkGr.h"
#include "SkMathPriv.h"
#include "SkMatrixPriv.h"
#include "SkPoint.h"
#include "SkPoint3.h"
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
namespace {
enum class MultiTexture : bool { kNo = false, kYes = true };
enum class Domain : bool { kNo = false, kYes = true };
/**
* Geometry Processor that draws a texture modulated by a vertex color (though, this is meant to be
* the same value across all vertices of a quad and uses flat interpolation when available). This is
* used by TextureOp below.
*/
class TextureGeometryProcessor : public GrGeometryProcessor {
public:
template <typename Pos> struct VertexCommon {
using Position = Pos;
Position fPosition;
GrColor fColor;
SkPoint fTextureCoords;
};
template <typename Pos, MultiTexture MT> struct OptionalMultiTextureVertex;
template <typename Pos>
struct OptionalMultiTextureVertex<Pos, MultiTexture::kNo> : VertexCommon<Pos> {
static constexpr MultiTexture kMultiTexture = MultiTexture::kNo;
};
template <typename Pos>
struct OptionalMultiTextureVertex<Pos, MultiTexture::kYes> : VertexCommon<Pos> {
static constexpr MultiTexture kMultiTexture = MultiTexture::kYes;
int fTextureIdx;
};
template <typename Pos, MultiTexture MT, Domain D> struct OptionalDomainVertex;
template <typename Pos, MultiTexture MT>
struct OptionalDomainVertex<Pos, MT, Domain::kNo> : OptionalMultiTextureVertex<Pos, MT> {
static constexpr Domain kDomain = Domain::kNo;
};
template <typename Pos, MultiTexture MT>
struct OptionalDomainVertex<Pos, MT, Domain::kYes> : OptionalMultiTextureVertex<Pos, MT> {
static constexpr Domain kDomain = Domain::kYes;
SkRect fTextureDomain;
};
template <typename Pos, MultiTexture MT, Domain D, GrAA> struct OptionalAAVertex;
template <typename Pos, MultiTexture MT, Domain D>
struct OptionalAAVertex<Pos, MT, D, GrAA::kNo> : OptionalDomainVertex<Pos, MT, D> {
static constexpr GrAA kAA = GrAA::kNo;
};
template <typename Pos, MultiTexture MT, Domain D>
struct OptionalAAVertex<Pos, MT, D, GrAA::kYes> : OptionalDomainVertex<Pos, MT, D> {
static constexpr GrAA kAA = GrAA::kYes;
SkPoint3 fEdges[4];
};
template <typename Pos, MultiTexture MT, Domain D, GrAA AA>
using Vertex = OptionalAAVertex<Pos, MT, D, AA>;
// Maximum number of textures supported by this op. Must also be checked against the caps
// limit. These numbers were based on some limited experiments on a HP Z840 and Pixel XL 2016
// and could probably use more tuning.
#ifdef SK_BUILD_FOR_ANDROID
static constexpr int kMaxTextures = 4;
#else
static constexpr int kMaxTextures = 8;
#endif
static int SupportsMultitexture(const GrShaderCaps& caps) {
return caps.integerSupport() && caps.maxFragmentSamplers() > 1;
}
static sk_sp<GrGeometryProcessor> Make(sk_sp<GrTextureProxy> proxies[], int proxyCnt,
sk_sp<GrColorSpaceXform> csxf, bool coverageAA,
bool perspective, Domain domain,
const GrSamplerState::Filter filters[],
const GrShaderCaps& caps) {
// We use placement new to avoid always allocating space for kMaxTextures TextureSampler
// instances.
int samplerCnt = NumSamplersToUse(proxyCnt, caps);
size_t size = sizeof(TextureGeometryProcessor) + sizeof(TextureSampler) * (samplerCnt - 1);
void* mem = GrGeometryProcessor::operator new(size);
return sk_sp<TextureGeometryProcessor>(
new (mem) TextureGeometryProcessor(proxies, proxyCnt, samplerCnt, std::move(csxf),
coverageAA, perspective, domain, filters, caps));
}
~TextureGeometryProcessor() override {
int cnt = this->numTextureSamplers();
for (int i = 1; i < cnt; ++i) {
fSamplers[i].~TextureSampler();
}
}
const char* name() const override { return "TextureGeometryProcessor"; }
void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
b->add32(GrColorSpaceXform::XformKey(fColorSpaceXform.get()));
uint32_t x = this->usesCoverageEdgeAA() ? 0 : 1;
x |= kFloat3_GrVertexAttribType == fPositions.fType ? 0 : 2;
x |= fDomain.isInitialized() ? 4 : 0;
b->add32(x);
}
GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps& caps) const override {
class GLSLProcessor : public GrGLSLGeometryProcessor {
public:
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& proc,
FPCoordTransformIter&& transformIter) override {
const auto& textureGP = proc.cast<TextureGeometryProcessor>();
this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
if (fColorSpaceXformHelper.isValid()) {
fColorSpaceXformHelper.setData(pdman, textureGP.fColorSpaceXform.get());
}
}
private:
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
using Interpolation = GrGLSLVaryingHandler::Interpolation;
const auto& textureGP = args.fGP.cast<TextureGeometryProcessor>();
fColorSpaceXformHelper.emitCode(
args.fUniformHandler, textureGP.fColorSpaceXform.get());
if (kFloat2_GrVertexAttribType == textureGP.fPositions.fType) {
args.fVaryingHandler->setNoPerspective();
}
args.fVaryingHandler->emitAttributes(textureGP);
gpArgs->fPositionVar = textureGP.fPositions.asShaderVar();
this->emitTransforms(args.fVertBuilder,
args.fVaryingHandler,
args.fUniformHandler,
textureGP.fTextureCoords.asShaderVar(),
args.fFPCoordTransformHandler);
args.fVaryingHandler->addPassThroughAttribute(&textureGP.fColors,
args.fOutputColor,
Interpolation::kCanBeFlat);
args.fFragBuilder->codeAppend("float2 texCoord;");
args.fVaryingHandler->addPassThroughAttribute(&textureGP.fTextureCoords,
"texCoord");
if (textureGP.fDomain.isInitialized()) {
args.fFragBuilder->codeAppend("float4 domain;");
args.fVaryingHandler->addPassThroughAttribute(
&textureGP.fDomain, "domain",
GrGLSLVaryingHandler::Interpolation::kCanBeFlat);
args.fFragBuilder->codeAppend(
"texCoord = clamp(texCoord, domain.xy, domain.zw);");
}
if (textureGP.numTextureSamplers() > 1) {
// If this changes to float, reconsider Interpolation::kMustBeFlat.
SkASSERT(kInt_GrVertexAttribType == textureGP.fTextureIdx.fType);
SkASSERT(args.fShaderCaps->integerSupport());
args.fFragBuilder->codeAppend("int texIdx;");
args.fVaryingHandler->addPassThroughAttribute(&textureGP.fTextureIdx, "texIdx",
Interpolation::kMustBeFlat);
args.fFragBuilder->codeAppend("switch (texIdx) {");
for (int i = 0; i < textureGP.numTextureSamplers(); ++i) {
args.fFragBuilder->codeAppendf("case %d: %s = ", i, args.fOutputColor);
args.fFragBuilder->appendTextureLookupAndModulate(args.fOutputColor,
args.fTexSamplers[i],
"texCoord",
kFloat2_GrSLType,
&fColorSpaceXformHelper);
args.fFragBuilder->codeAppend("; break;");
}
args.fFragBuilder->codeAppend("}");
} else {
args.fFragBuilder->codeAppendf("%s = ", args.fOutputColor);
args.fFragBuilder->appendTextureLookupAndModulate(args.fOutputColor,
args.fTexSamplers[0],
"texCoord",
kFloat2_GrSLType,
&fColorSpaceXformHelper);
}
args.fFragBuilder->codeAppend(";");
if (textureGP.usesCoverageEdgeAA()) {
const char* aaDistName = nullptr;
bool mulByFragCoordW = false;
// When interpolation is inaccurate we perform the evaluation of the edge
// equations in the fragment shader rather than interpolating values computed
// in the vertex shader.
if (!args.fShaderCaps->interpolantsAreInaccurate()) {
GrGLSLVarying aaDistVarying(kFloat4_GrSLType,
GrGLSLVarying::Scope::kVertToFrag);
if (kFloat3_GrVertexAttribType == textureGP.fPositions.fType) {
args.fVaryingHandler->addVarying("aaDists", &aaDistVarying);
// The distance from edge equation e to homogenous point p=sk_Position
// is e.x*p.x/p.wx + e.y*p.y/p.w + e.z. However, we want screen space
// interpolation of this distance. We can do this by multiplying the
// varying in the VS by p.w and then multiplying by sk_FragCoord.w in
// the FS. So we output e.x*p.x + e.y*p.y + e.z * p.w
args.fVertBuilder->codeAppendf(
R"(%s = float4(dot(aaEdge0, %s), dot(aaEdge1, %s),
dot(aaEdge2, %s), dot(aaEdge3, %s));)",
aaDistVarying.vsOut(), textureGP.fPositions.fName,
textureGP.fPositions.fName, textureGP.fPositions.fName,
textureGP.fPositions.fName);
mulByFragCoordW = true;
} else {
args.fVaryingHandler->addVarying("aaDists", &aaDistVarying);
args.fVertBuilder->codeAppendf(
R"(%s = float4(dot(aaEdge0.xy, %s.xy) + aaEdge0.z,
dot(aaEdge1.xy, %s.xy) + aaEdge1.z,
dot(aaEdge2.xy, %s.xy) + aaEdge2.z,
dot(aaEdge3.xy, %s.xy) + aaEdge3.z);)",
aaDistVarying.vsOut(), textureGP.fPositions.fName,
textureGP.fPositions.fName, textureGP.fPositions.fName,
textureGP.fPositions.fName);
}
aaDistName = aaDistVarying.fsIn();
} else {
GrGLSLVarying aaEdgeVarying[4]{
{kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag},
{kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag},
{kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag},
{kFloat3_GrSLType, GrGLSLVarying::Scope::kVertToFrag}
};
for (int i = 0; i < 4; ++i) {
SkString name;
name.printf("aaEdge%d", i);
args.fVaryingHandler->addVarying(name.c_str(), &aaEdgeVarying[i],
Interpolation::kCanBeFlat);
args.fVertBuilder->codeAppendf(
"%s = aaEdge%d;", aaEdgeVarying[i].vsOut(), i);
}
args.fFragBuilder->codeAppendf(
R"(float4 aaDists = float4(dot(%s.xy, sk_FragCoord.xy) + %s.z,
dot(%s.xy, sk_FragCoord.xy) + %s.z,
dot(%s.xy, sk_FragCoord.xy) + %s.z,
dot(%s.xy, sk_FragCoord.xy) + %s.z);)",
aaEdgeVarying[0].fsIn(), aaEdgeVarying[0].fsIn(),
aaEdgeVarying[1].fsIn(), aaEdgeVarying[1].fsIn(),
aaEdgeVarying[2].fsIn(), aaEdgeVarying[2].fsIn(),
aaEdgeVarying[3].fsIn(), aaEdgeVarying[3].fsIn());
aaDistName = "aaDists";
}
args.fFragBuilder->codeAppendf(
"float mindist = min(min(%s.x, %s.y), min(%s.z, %s.w));",
aaDistName, aaDistName, aaDistName, aaDistName);
if (mulByFragCoordW) {
args.fFragBuilder->codeAppend("mindist *= sk_FragCoord.w;");
}
args.fFragBuilder->codeAppendf("%s = float4(clamp(mindist, 0, 1));",
args.fOutputCoverage);
} else {
args.fFragBuilder->codeAppendf("%s = float4(1);", args.fOutputCoverage);
}
}
GrGLSLColorSpaceXformHelper fColorSpaceXformHelper;
};
return new GLSLProcessor;
}
bool usesCoverageEdgeAA() const { return SkToBool(fAAEdges[0].isInitialized()); }
private:
// This exists to reduce the number of shaders generated. It does some rounding of sampler
// counts.
static int NumSamplersToUse(int numRealProxies, const GrShaderCaps& caps) {
SkASSERT(numRealProxies > 0 && numRealProxies <= kMaxTextures &&
numRealProxies <= caps.maxFragmentSamplers());
if (1 == numRealProxies) {
return 1;
}
if (numRealProxies <= 4) {
return 4;
}
// Round to the next power of 2 and then clamp to kMaxTextures and the max allowed by caps.
return SkTMin(SkNextPow2(numRealProxies), SkTMin(kMaxTextures, caps.maxFragmentSamplers()));
}
TextureGeometryProcessor(sk_sp<GrTextureProxy> proxies[], int proxyCnt, int samplerCnt,
sk_sp<GrColorSpaceXform> csxf, bool coverageAA, bool perspective,
Domain domain, const GrSamplerState::Filter filters[],
const GrShaderCaps& caps)
: INHERITED(kTextureGeometryProcessor_ClassID), fColorSpaceXform(std::move(csxf)) {
SkASSERT(proxyCnt > 0 && samplerCnt >= proxyCnt);
fSamplers[0].reset(std::move(proxies[0]), filters[0]);
this->addTextureSampler(&fSamplers[0]);
for (int i = 1; i < proxyCnt; ++i) {
// This class has one sampler built in, the rest come from memory this processor was
// placement-newed into and so haven't been constructed.
new (&fSamplers[i]) TextureSampler(std::move(proxies[i]), filters[i]);
this->addTextureSampler(&fSamplers[i]);
}
if (perspective) {
fPositions = this->addVertexAttrib("position", kFloat3_GrVertexAttribType);
} else {
fPositions = this->addVertexAttrib("position", kFloat2_GrVertexAttribType);
}
fColors = this->addVertexAttrib("color", kUByte4_norm_GrVertexAttribType);
fTextureCoords = this->addVertexAttrib("textureCoords", kFloat2_GrVertexAttribType);
if (samplerCnt > 1) {
// Here we initialize any extra samplers by repeating the last one samplerCnt - proxyCnt
// times.
GrTextureProxy* dupeProxy = fSamplers[proxyCnt - 1].proxy();
for (int i = proxyCnt; i < samplerCnt; ++i) {
new (&fSamplers[i]) TextureSampler(sk_ref_sp(dupeProxy), filters[proxyCnt - 1]);
this->addTextureSampler(&fSamplers[i]);
}
SkASSERT(caps.integerSupport());
fTextureIdx = this->addVertexAttrib("textureIdx", kInt_GrVertexAttribType);
}
if (domain == Domain::kYes) {
fDomain = this->addVertexAttrib("domain", kFloat4_GrVertexAttribType);
}
if (coverageAA) {
fAAEdges[0] = this->addVertexAttrib("aaEdge0", kFloat3_GrVertexAttribType);
fAAEdges[1] = this->addVertexAttrib("aaEdge1", kFloat3_GrVertexAttribType);
fAAEdges[2] = this->addVertexAttrib("aaEdge2", kFloat3_GrVertexAttribType);
fAAEdges[3] = this->addVertexAttrib("aaEdge3", kFloat3_GrVertexAttribType);
}
}
Attribute fPositions;
Attribute fColors;
Attribute fTextureCoords;
Attribute fTextureIdx;
Attribute fDomain;
Attribute fAAEdges[4];
sk_sp<GrColorSpaceXform> fColorSpaceXform;
TextureSampler fSamplers[1];
typedef GrGeometryProcessor INHERITED;
};
// This computes the four edge equations for a quad, then outsets them and computes a new quad
// as the intersection points of the outset edges. 'x' and 'y' contain the original points as input
// and the outset points as output. 'a', 'b', and 'c' are the edge equation coefficients on output.
static void compute_quad_edges_and_outset_vertices(Sk4f* x, Sk4f* y, Sk4f* a, Sk4f* b, Sk4f* c) {
static constexpr auto fma = SkNx_fma<4, float>;
// These rotate the points/edge values either clockwise or counterclockwise assuming tri strip
// order.
auto nextCW = [](const Sk4f& v) { return SkNx_shuffle<2, 0, 3, 1>(v); };
auto nextCCW = [](const Sk4f& v) { return SkNx_shuffle<1, 3, 0, 2>(v); };
auto xnext = nextCCW(*x);
auto ynext = nextCCW(*y);
*a = ynext - *y;
*b = *x - xnext;
*c = fma(xnext, *y, -ynext * *x);
Sk4f invNormLengths = (*a * *a + *b * *b).rsqrt();
// Make sure the edge equations have their normals facing into the quad in device space.
auto test = fma(*a, nextCW(*x), fma(*b, nextCW(*y), *c));
if ((test < Sk4f(0)).anyTrue()) {
invNormLengths = -invNormLengths;
}
*a *= invNormLengths;
*b *= invNormLengths;
*c *= invNormLengths;
// Here is the outset. This makes our edge equations compute coverage without requiring a
// half pixel offset and is also used to compute the bloated quad that will cover all
// pixels.
*c += Sk4f(0.5f);
// Reverse the process to compute the points of the bloated quad from the edge equations.
// This time the inputs don't have 1s as their third coord and we want to homogenize rather
// than normalize.
auto anext = nextCW(*a);
auto bnext = nextCW(*b);
auto cnext = nextCW(*c);
*x = fma(bnext, *c, -*b * cnext);
*y = fma(*a, cnext, -anext * *c);
auto ic = (fma(anext, *b, -bnext * *a)).invert();
*x *= ic;
*y *= ic;
}
namespace {
// This is a class soley so it can be partially specialized (functions cannot be).
template <typename V, GrAA AA = V::kAA, typename Position = typename V::Position>
class VertexAAHandler;
template<typename V> class VertexAAHandler<V, GrAA::kNo, SkPoint> {
public:
static void AssignPositionsAndTexCoords(V* vertices, const GrPerspQuad& quad,
const SkRect& texRect) {
SkASSERT((quad.w4f() == Sk4f(1.f)).allTrue());
SkPointPriv::SetRectTriStrip(&vertices[0].fTextureCoords, texRect, sizeof(V));
for (int i = 0; i < 4; ++i) {
vertices[i].fPosition = {quad.x(i), quad.y(i)};
}
}
};
template<typename V> class VertexAAHandler<V, GrAA::kNo, SkPoint3> {
public:
static void AssignPositionsAndTexCoords(V* vertices, const GrPerspQuad& quad,
const SkRect& texRect) {
SkPointPriv::SetRectTriStrip(&vertices[0].fTextureCoords, texRect, sizeof(V));
for (int i = 0; i < 4; ++i) {
vertices[i].fPosition = quad.point(i);
}
}
};
template<typename V> class VertexAAHandler<V, GrAA::kYes, SkPoint> {
public:
static void AssignPositionsAndTexCoords(V* vertices, const GrPerspQuad& quad,
const SkRect& texRect) {
SkASSERT((quad.w4f() == Sk4f(1.f)).allTrue());
auto x = quad.x4f();
auto y = quad.y4f();
Sk4f a, b, c;
compute_quad_edges_and_outset_vertices(&x, &y, &a, &b, &c);
for (int i = 0; i < 4; ++i) {
vertices[i].fPosition = {x[i], y[i]};
for (int j = 0; j < 4; ++j) {
vertices[i].fEdges[j] = {a[j], b[j], c[j]};
}
}
AssignTexCoords(vertices, quad, texRect);
}
private:
static void AssignTexCoords(V* vertices, const GrPerspQuad& quad, const SkRect& tex) {
SkMatrix q = SkMatrix::MakeAll(quad.x(0), quad.x(1), quad.x(2),
quad.y(0), quad.y(1), quad.y(2),
1.f, 1.f, 1.f);
SkMatrix qinv;
if (!q.invert(&qinv)) {
return;
}
SkMatrix t = SkMatrix::MakeAll(tex.fLeft, tex.fLeft, tex.fRight,
tex.fTop, tex.fBottom, tex.fTop,
1.f, 1.f, 1.f);
SkMatrix map;
map.setConcat(t, qinv);
SkMatrixPriv::MapPointsWithStride(map, &vertices[0].fTextureCoords, sizeof(V),
&vertices[0].fPosition, sizeof(V), 4);
}
};
template<typename V> class VertexAAHandler<V, GrAA::kYes, SkPoint3> {
public:
static void AssignPositionsAndTexCoords(V* vertices, const GrPerspQuad& quad,
const SkRect& texRect) {
auto x = quad.x4f();
auto y = quad.y4f();
auto iw = quad.iw4f();
x *= iw;
y *= iw;
// Get an equation for w from device space coords.
SkMatrix P;
P.setAll(x[0], y[0], 1, x[1], y[1], 1, x[2], y[2], 1);
SkAssertResult(P.invert(&P));
SkPoint3 weq{quad.w(0), quad.w(1), quad.w(2)};
P.mapHomogeneousPoints(&weq, &weq, 1);
Sk4f a, b, c;
compute_quad_edges_and_outset_vertices(&x, &y, &a, &b, &c);
// Compute new w values for the output vertices;
auto w = Sk4f(weq.fX) * x + Sk4f(weq.fY) * y + Sk4f(weq.fZ);
x *= w;
y *= w;
for (int i = 0; i < 4; ++i) {
vertices[i].fPosition = {x[i], y[i], w[i]};
for (int j = 0; j < 4; ++j) {
vertices[i].fEdges[j] = {a[j], b[j], c[j]};
}
}
AssignTexCoords(vertices, quad, texRect);
}
private:
static void AssignTexCoords(V* vertices, const GrPerspQuad& quad, const SkRect& tex) {
SkMatrix q = SkMatrix::MakeAll(quad.x(0), quad.x(1), quad.x(2),
quad.y(0), quad.y(1), quad.y(2),
quad.w(0), quad.w(1), quad.w(2));
SkMatrix qinv;
if (!q.invert(&qinv)) {
return;
}
SkMatrix t = SkMatrix::MakeAll(tex.fLeft, tex.fLeft, tex.fRight,
tex.fTop, tex.fBottom, tex.fTop,
1.f, 1.f, 1.f);
SkMatrix map;
map.setConcat(t, qinv);
SkPoint3 tempTexCoords[4];
SkMatrixPriv::MapHomogeneousPointsWithStride(map, tempTexCoords, sizeof(SkPoint3),
&vertices[0].fPosition, sizeof(V), 4);
for (int i = 0; i < 4; ++i) {
auto invW = 1.f / tempTexCoords[i].fZ;
vertices[i].fTextureCoords.fX = tempTexCoords[i].fX * invW;
vertices[i].fTextureCoords.fY = tempTexCoords[i].fY * invW;
}
}
};
template <typename V, MultiTexture MT = V::kMultiTexture> struct TexIdAssigner;
template <typename V> struct TexIdAssigner<V, MultiTexture::kYes> {
static void Assign(V* vertices, int textureIdx) {
for (int i = 0; i < 4; ++i) {
vertices[i].fTextureIdx = textureIdx;
}
}
};
template <typename V> struct TexIdAssigner<V, MultiTexture::kNo> {
static void Assign(V* vertices, int textureIdx) {}
};
template <typename V, Domain D = V::kDomain> struct DomainAssigner;
template <typename V> struct DomainAssigner<V, Domain::kYes> {
static void Assign(V* vertices, Domain domain, GrSamplerState::Filter filter,
const SkRect& srcRect, GrSurfaceOrigin origin, float iw, float ih) {
static constexpr SkRect kLargeRect = {-2, -2, 2, 2};
SkRect domainRect;
if (domain == Domain::kYes) {
auto ltrb = Sk4f::Load(&srcRect);
if (filter == GrSamplerState::Filter::kBilerp) {
auto rblt = SkNx_shuffle<2, 3, 0, 1>(ltrb);
auto whwh = (rblt - ltrb).abs();
auto c = (rblt + ltrb) * 0.5f;
static const Sk4f kOffsets = {0.5f, 0.5f, -0.5f, -0.5f};
ltrb = (whwh < 1.f).thenElse(c, ltrb + kOffsets);
}
ltrb *= Sk4f(iw, ih, iw, ih);
if (origin == kBottomLeft_GrSurfaceOrigin) {
static const Sk4f kMul = {1.f, -1.f, 1.f, -1.f};
static const Sk4f kAdd = {0.f, 1.f, 0.f, 1.f};
ltrb = SkNx_shuffle<0, 3, 2, 1>(kMul * ltrb + kAdd);
}
ltrb.store(&domainRect);
} else {
domainRect = kLargeRect;
}
for (int i = 0; i < 4; ++i) {
vertices[i].fTextureDomain = domainRect;
}
}
};
template <typename V> struct DomainAssigner<V, Domain::kNo> {
static void Assign(V*, Domain domain, GrSamplerState::Filter, const SkRect&, GrSurfaceOrigin,
float iw, float ih) {
SkASSERT(domain == Domain::kNo);
}
};
} // anonymous namespace
template <typename V>
static void tessellate_quad(const GrPerspQuad& devQuad, const SkRect& srcRect, GrColor color,
GrSurfaceOrigin origin, GrSamplerState::Filter filter, V* vertices,
SkScalar iw, SkScalar ih, int textureIdx, Domain domain) {
SkRect texRect = {
iw * srcRect.fLeft,
ih * srcRect.fTop,
iw * srcRect.fRight,
ih * srcRect.fBottom
};
if (origin == kBottomLeft_GrSurfaceOrigin) {
texRect.fTop = 1.f - texRect.fTop;
texRect.fBottom = 1.f - texRect.fBottom;
}
VertexAAHandler<V>::AssignPositionsAndTexCoords(vertices, devQuad, texRect);
vertices[0].fColor = color;
vertices[1].fColor = color;
vertices[2].fColor = color;
vertices[3].fColor = color;
TexIdAssigner<V>::Assign(vertices, textureIdx);
DomainAssigner<V>::Assign(vertices, domain, filter, srcRect, origin, iw, ih);
}
/**
* Op that implements GrTextureOp::Make. It draws textured quads. Each quad can modulate against a
* the texture by color. The blend with the destination is always src-over. The edges are non-AA.
*/
class TextureOp final : public GrMeshDrawOp {
public:
static std::unique_ptr<GrDrawOp> Make(sk_sp<GrTextureProxy> proxy,
GrSamplerState::Filter filter, GrColor color,
const SkRect& srcRect, const SkRect& dstRect,
GrAAType aaType, SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix, sk_sp<GrColorSpaceXform> csxf,
bool allowSRBInputs) {
return std::unique_ptr<GrDrawOp>(new TextureOp(std::move(proxy), filter, color, srcRect,
dstRect, aaType, constraint, viewMatrix,
std::move(csxf), allowSRBInputs));
}
~TextureOp() override {
if (fFinalized) {
auto proxies = this->proxies();
for (int i = 0; i < fProxyCnt; ++i) {
proxies[i]->completedRead();
}
if (fProxyCnt > 1) {
delete[] reinterpret_cast<const char*>(proxies);
}
} else {
SkASSERT(1 == fProxyCnt);
fProxy0->unref();
}
}
const char* name() const override { return "TextureOp"; }
void visitProxies(const VisitProxyFunc& func) const override {
auto proxies = this->proxies();
for (int i = 0; i < fProxyCnt; ++i) {
func(proxies[i]);
}
}
SkString dumpInfo() const override {
SkString str;
str.appendf("AllowSRGBInputs: %d\n", fAllowSRGBInputs);
str.appendf("# draws: %d\n", fDraws.count());
auto proxies = this->proxies();
for (int i = 0; i < fProxyCnt; ++i) {
str.appendf("Proxy ID %d: %d, Filter: %d\n", i, proxies[i]->uniqueID().asUInt(),
static_cast<int>(this->filters()[i]));
}
for (int i = 0; i < fDraws.count(); ++i) {
const Draw& draw = fDraws[i];
str.appendf(
"%d: Color: 0x%08x, ProxyIdx: %d, TexRect [L: %.2f, T: %.2f, R: %.2f, B: %.2f] "
"Quad [(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)]\n",
i, draw.color(), draw.textureIdx(), draw.srcRect().fLeft, draw.srcRect().fTop,
draw.srcRect().fRight, draw.srcRect().fBottom, draw.quad().point(0).fX,
draw.quad().point(0).fY, draw.quad().point(1).fX, draw.quad().point(1).fY,
draw.quad().point(2).fX, draw.quad().point(2).fY, draw.quad().point(3).fX,
draw.quad().point(3).fY);
}
str += INHERITED::dumpInfo();
return str;
}
RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrPixelConfigIsClamped dstIsClamped) override {
SkASSERT(!fFinalized);
SkASSERT(1 == fProxyCnt);
fFinalized = true;
fProxy0->addPendingRead();
fProxy0->unref();
return RequiresDstTexture::kNo;
}
FixedFunctionFlags fixedFunctionFlags() const override {
return this->aaType() == GrAAType::kMSAA ? FixedFunctionFlags::kUsesHWAA
: FixedFunctionFlags::kNone;
}
DEFINE_OP_CLASS_ID
private:
// This is used in a heursitic for choosing a code path. We don't care what happens with
// really large rects, infs, nans, etc.
#if defined(__clang__) && (__clang_major__ * 1000 + __clang_minor__) >= 3007
__attribute__((no_sanitize("float-cast-overflow")))
#endif
size_t RectSizeAsSizeT(const SkRect& rect) {;
return static_cast<size_t>(SkTMax(rect.width(), 1.f) * SkTMax(rect.height(), 1.f));
}
static constexpr int kMaxTextures = TextureGeometryProcessor::kMaxTextures;
TextureOp(sk_sp<GrTextureProxy> proxy, GrSamplerState::Filter filter, GrColor color,
const SkRect& srcRect, const SkRect& dstRect, GrAAType aaType,
SkCanvas::SrcRectConstraint constraint, const SkMatrix& viewMatrix,
sk_sp<GrColorSpaceXform> csxf, bool allowSRGBInputs)
: INHERITED(ClassID())
, fColorSpaceXform(std::move(csxf))
, fProxy0(proxy.release())
, fFilter0(filter)
, fProxyCnt(1)
, fAAType(static_cast<unsigned>(aaType))
, fFinalized(0)
, fAllowSRGBInputs(allowSRGBInputs ? 1 : 0) {
SkASSERT(aaType != GrAAType::kMixedSamples);
const Draw& draw = fDraws.emplace_back(srcRect, 0, GrPerspQuad(dstRect, viewMatrix),
constraint, color);
fPerspective = viewMatrix.hasPerspective();
fDomain = (bool)draw.domain();
SkRect bounds;
bounds = draw.quad().bounds();
this->setBounds(bounds, HasAABloat::kNo, IsZeroArea::kNo);
fMaxApproxDstPixelArea = RectSizeAsSizeT(bounds);
}
template <typename Pos, MultiTexture MT, Domain D, GrAA AA>
void tess(void* v, const float iw[], const float ih[], const GrGeometryProcessor* gp) {
using Vertex = TextureGeometryProcessor::Vertex<Pos, MT, D, AA>;
SkASSERT(gp->getVertexStride() == sizeof(Vertex));
auto vertices = static_cast<Vertex*>(v);
auto proxies = this->proxies();
auto filters = this->filters();
for (const auto& draw : fDraws) {
auto textureIdx = draw.textureIdx();
auto origin = proxies[textureIdx]->origin();
tessellate_quad<Vertex>(draw.quad(), draw.srcRect(), draw.color(), origin,
filters[textureIdx], vertices, iw[textureIdx], ih[textureIdx],
textureIdx, draw.domain());
vertices += 4;
}
}
void onPrepareDraws(Target* target) override {
sk_sp<GrTextureProxy> proxiesSPs[kMaxTextures];
auto proxies = this->proxies();
auto filters = this->filters();
for (int i = 0; i < fProxyCnt; ++i) {
if (!proxies[i]->instantiate(target->resourceProvider())) {
return;
}
proxiesSPs[i] = sk_ref_sp(proxies[i]);
}
Domain domain = fDomain ? Domain::kYes : Domain::kNo;
bool coverageAA = GrAAType::kCoverage == this->aaType();
sk_sp<GrGeometryProcessor> gp = TextureGeometryProcessor::Make(
proxiesSPs, fProxyCnt, std::move(fColorSpaceXform), coverageAA, fPerspective,
domain, filters, *target->caps().shaderCaps());
GrPipeline::InitArgs args;
args.fProxy = target->proxy();
args.fCaps = &target->caps();
args.fResourceProvider = target->resourceProvider();
args.fFlags = 0;
if (fAllowSRGBInputs) {
args.fFlags |= GrPipeline::kAllowSRGBInputs_Flag;
}
if (GrAAType::kMSAA == this->aaType()) {
args.fFlags |= GrPipeline::kHWAntialias_Flag;
}
const GrPipeline* pipeline = target->allocPipeline(args, GrProcessorSet::MakeEmptySet(),
target->detachAppliedClip());
int vstart;
const GrBuffer* vbuffer;
void* vdata = target->makeVertexSpace(gp->getVertexStride(), 4 * fDraws.count(), &vbuffer,
&vstart);
if (!vdata) {
SkDebugf("Could not allocate vertices\n");
return;
}
float iw[kMaxTextures];
float ih[kMaxTextures];
for (int t = 0; t < fProxyCnt; ++t) {
const auto* texture = proxies[t]->priv().peekTexture();
iw[t] = 1.f / texture->width();
ih[t] = 1.f / texture->height();
}
#if defined(_MSC_VER) && _MSC_VER <= 1910
# define MAYBE_CONSTEXPR const
#else
# define MAYBE_CONSTEXPR constexpr
#endif
using TessFn =
decltype(&TextureOp::tess<SkPoint, MultiTexture::kNo, Domain::kNo, GrAA::kNo>);
static MAYBE_CONSTEXPR TessFn kTessFns[] = {
&TextureOp::tess<SkPoint, MultiTexture::kNo, Domain::kNo, GrAA::kNo>,
&TextureOp::tess<SkPoint, MultiTexture::kNo, Domain::kNo, GrAA::kYes>,
&TextureOp::tess<SkPoint, MultiTexture::kNo, Domain::kYes, GrAA::kNo>,
&TextureOp::tess<SkPoint, MultiTexture::kNo, Domain::kYes, GrAA::kYes>,
&TextureOp::tess<SkPoint, MultiTexture::kYes, Domain::kNo, GrAA::kNo>,
&TextureOp::tess<SkPoint, MultiTexture::kYes, Domain::kNo, GrAA::kYes>,
&TextureOp::tess<SkPoint, MultiTexture::kYes, Domain::kYes, GrAA::kNo>,
&TextureOp::tess<SkPoint, MultiTexture::kYes, Domain::kYes, GrAA::kYes>,
&TextureOp::tess<SkPoint3, MultiTexture::kNo, Domain::kNo, GrAA::kNo>,
&TextureOp::tess<SkPoint3, MultiTexture::kNo, Domain::kNo, GrAA::kYes>,
&TextureOp::tess<SkPoint3, MultiTexture::kNo, Domain::kYes, GrAA::kNo>,
&TextureOp::tess<SkPoint3, MultiTexture::kNo, Domain::kYes, GrAA::kYes>,
&TextureOp::tess<SkPoint3, MultiTexture::kYes, Domain::kNo, GrAA::kNo>,
&TextureOp::tess<SkPoint3, MultiTexture::kYes, Domain::kNo, GrAA::kYes>,
&TextureOp::tess<SkPoint3, MultiTexture::kYes, Domain::kYes, GrAA::kNo>,
&TextureOp::tess<SkPoint3, MultiTexture::kYes, Domain::kYes, GrAA::kYes>,
};
#undef MAYBE_CONSTEXPR
int tessFnIdx = 0;
tessFnIdx |= coverageAA ? 0x1 : 0x0;
tessFnIdx |= fDomain ? 0x2 : 0x0;
tessFnIdx |= (fProxyCnt > 1) ? 0x4 : 0x0;
tessFnIdx |= fPerspective ? 0x8 : 0x0;
(this->*(kTessFns[tessFnIdx]))(vdata, iw, ih, gp.get());
GrPrimitiveType primitiveType =
fDraws.count() > 1 ? GrPrimitiveType::kTriangles : GrPrimitiveType::kTriangleStrip;
GrMesh mesh(primitiveType);
if (fDraws.count() > 1) {
sk_sp<const GrBuffer> ibuffer = target->resourceProvider()->refQuadIndexBuffer();
if (!ibuffer) {
SkDebugf("Could not allocate quad indices\n");
return;
}
mesh.setIndexedPatterned(ibuffer.get(), 6, 4, fDraws.count(),
GrResourceProvider::QuadCountOfQuadBuffer());
} else {
mesh.setNonIndexedNonInstanced(4);
}
mesh.setVertexData(vbuffer, vstart);
target->draw(gp.get(), pipeline, mesh);
}
bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
const auto* that = t->cast<TextureOp>();
const auto& shaderCaps = *caps.shaderCaps();
if (!GrColorSpaceXform::Equals(fColorSpaceXform.get(), that->fColorSpaceXform.get())) {
return false;
}
if (this->aaType() != that->aaType()) {
return false;
}
// Because of an issue where GrColorSpaceXform adds the same function every time it is used
// in a texture lookup, we only allow multiple textures when there is no transform.
if (TextureGeometryProcessor::SupportsMultitexture(shaderCaps) && !fColorSpaceXform &&
fMaxApproxDstPixelArea <= shaderCaps.disableImageMultitexturingDstRectAreaThreshold() &&
that->fMaxApproxDstPixelArea <=
shaderCaps.disableImageMultitexturingDstRectAreaThreshold()) {
int map[kMaxTextures];
int numNewProxies = this->mergeProxies(that, map, shaderCaps);
if (numNewProxies < 0) {
return false;
}
if (1 == fProxyCnt && numNewProxies) {
void* mem = new char[(sizeof(GrSamplerState::Filter) + sizeof(GrTextureProxy*)) *
kMaxTextures];
auto proxies = reinterpret_cast<GrTextureProxy**>(mem);
auto filters = reinterpret_cast<GrSamplerState::Filter*>(proxies + kMaxTextures);
proxies[0] = fProxy0;
filters[0] = fFilter0;
fProxyArray = proxies;
}
fProxyCnt += numNewProxies;
auto thisProxies = fProxyArray;
auto thatProxies = that->proxies();
auto thatFilters = that->filters();
auto thisFilters = reinterpret_cast<GrSamplerState::Filter*>(thisProxies +
kMaxTextures);
for (int i = 0; i < that->fProxyCnt; ++i) {
if (map[i] < 0) {
thatProxies[i]->addPendingRead();
thisProxies[-map[i]] = thatProxies[i];
thisFilters[-map[i]] = thatFilters[i];
map[i] = -map[i];
}
}
int firstNewDraw = fDraws.count();
fDraws.push_back_n(that->fDraws.count(), that->fDraws.begin());
for (int i = firstNewDraw; i < fDraws.count(); ++i) {
fDraws[i].setTextureIdx(map[fDraws[i].textureIdx()]);
}
} else {
// We can get here when one of the ops is already multitextured but the other cannot
// be because of the dst rect size.
if (fProxyCnt > 1 || that->fProxyCnt > 1) {
return false;
}
if (fProxy0->uniqueID() != that->fProxy0->uniqueID() || fFilter0 != that->fFilter0) {
return false;
}
fDraws.push_back_n(that->fDraws.count(), that->fDraws.begin());
}
this->joinBounds(*that);
fMaxApproxDstPixelArea = SkTMax(that->fMaxApproxDstPixelArea, fMaxApproxDstPixelArea);
fPerspective |= that->fPerspective;
fDomain |= that->fDomain;
return true;
}
/**
* Determines a mapping of indices from that's proxy array to this's proxy array. A negative map
* value means that's proxy should be added to this's proxy array at the absolute value of
* the map entry. If it is determined that the ops shouldn't combine their proxies then a
* negative value is returned. Otherwise, return value indicates the number of proxies that have
* to be added to this op or, equivalently, the number of negative entries in map.
*/
int mergeProxies(const TextureOp* that, int map[kMaxTextures], const GrShaderCaps& caps) const {
std::fill_n(map, kMaxTextures, -kMaxTextures);
int sharedProxyCnt = 0;
auto thisProxies = this->proxies();
auto thisFilters = this->filters();
auto thatProxies = that->proxies();
auto thatFilters = that->filters();
for (int i = 0; i < fProxyCnt; ++i) {
for (int j = 0; j < that->fProxyCnt; ++j) {
if (thisProxies[i]->uniqueID() == thatProxies[j]->uniqueID()) {
if (thisFilters[i] != thatFilters[j]) {
// In GL we don't currently support using the same texture with different
// samplers. If we added support for sampler objects and a cap bit to know
// it's ok to use different filter modes then we could support this.
// Otherwise, we could also only allow a single filter mode for each op
// instance.
return -1;
}
map[j] = i;
++sharedProxyCnt;
break;
}
}
}
int actualMaxTextures = SkTMin(caps.maxFragmentSamplers(), kMaxTextures);
int newProxyCnt = that->fProxyCnt - sharedProxyCnt;
if (newProxyCnt + fProxyCnt > actualMaxTextures) {
return -1;
}
GrPixelConfig config = thisProxies[0]->config();
int nextSlot = fProxyCnt;
for (int j = 0; j < that->fProxyCnt; ++j) {
// We want to avoid making many shaders because of different permutations of shader
// based swizzle and sampler types. The approach taken here is to require the configs to
// be the same and to only allow already instantiated proxies that have the most
// common sampler type. Otherwise we don't merge.
if (thatProxies[j]->config() != config) {
return -1;
}
if (GrTexture* tex = thatProxies[j]->priv().peekTexture()) {
if (tex->texturePriv().samplerType() != kTexture2DSampler_GrSLType) {
return -1;
}
}
if (map[j] < 0) {
map[j] = -(nextSlot++);
}
}
return newProxyCnt;
}
GrAAType aaType() const { return static_cast<GrAAType>(fAAType); }
GrTextureProxy* const* proxies() const { return fProxyCnt > 1 ? fProxyArray : &fProxy0; }
const GrSamplerState::Filter* filters() const {
if (fProxyCnt > 1) {
return reinterpret_cast<const GrSamplerState::Filter*>(fProxyArray + kMaxTextures);
}
return &fFilter0;
}
class Draw {
public:
Draw(const SkRect& srcRect, int textureIdx, const GrPerspQuad& quad,
SkCanvas::SrcRectConstraint constraint, GrColor color)
: fSrcRect(srcRect)
, fHasDomain(constraint == SkCanvas::kStrict_SrcRectConstraint)
, fTextureIdx(SkToUInt(textureIdx))
, fQuad(quad)
, fColor(color) {}
const GrPerspQuad& quad() const { return fQuad; }
int textureIdx() const { return SkToInt(fTextureIdx); }
const SkRect& srcRect() const { return fSrcRect; }
GrColor color() const { return fColor; }
Domain domain() const { return Domain(fHasDomain); }
void setTextureIdx(int i) { fTextureIdx = SkToUInt(i); }
private:
SkRect fSrcRect;
unsigned fHasDomain : 1;
unsigned fTextureIdx : 31;
GrPerspQuad fQuad;
GrColor fColor;
};
SkSTArray<1, Draw, true> fDraws;
sk_sp<GrColorSpaceXform> fColorSpaceXform;
// Initially we store a single proxy ptr and a single filter. If we grow to have more than
// one proxy we instead store pointers to dynamically allocated arrays of size kMaxTextures
// followed by kMaxTextures filters.
union {
GrTextureProxy* fProxy0;
GrTextureProxy** fProxyArray;
};
size_t fMaxApproxDstPixelArea;
GrSamplerState::Filter fFilter0;
uint8_t fProxyCnt;
unsigned fAAType : 2;
unsigned fPerspective : 1;
unsigned fDomain : 1;
// Used to track whether fProxy is ref'ed or has a pending IO after finalize() is called.
unsigned fFinalized : 1;
unsigned fAllowSRGBInputs : 1;
typedef GrMeshDrawOp INHERITED;
};
constexpr int TextureGeometryProcessor::kMaxTextures;
constexpr int TextureOp::kMaxTextures;
} // anonymous namespace
namespace GrTextureOp {
std::unique_ptr<GrDrawOp> Make(sk_sp<GrTextureProxy> proxy, GrSamplerState::Filter filter,
GrColor color, const SkRect& srcRect, const SkRect& dstRect,
GrAAType aaType, SkCanvas::SrcRectConstraint constraint,
const SkMatrix& viewMatrix, sk_sp<GrColorSpaceXform> csxf,
bool allowSRGBInputs) {
return TextureOp::Make(std::move(proxy), filter, color, srcRect, dstRect, aaType, constraint,
viewMatrix, std::move(csxf), allowSRGBInputs);
}
} // namespace GrTextureOp
#if GR_TEST_UTILS
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrProxyProvider.h"
GR_DRAW_OP_TEST_DEFINE(TextureOp) {
GrSurfaceDesc desc;
desc.fConfig = kRGBA_8888_GrPixelConfig;
desc.fHeight = random->nextULessThan(90) + 10;
desc.fWidth = random->nextULessThan(90) + 10;
auto origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin : kBottomLeft_GrSurfaceOrigin;
SkBackingFit fit = random->nextBool() ? SkBackingFit::kApprox : SkBackingFit::kExact;
GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(desc, origin, fit, SkBudgeted::kNo);
SkRect rect = GrTest::TestRect(random);
SkRect srcRect;
srcRect.fLeft = random->nextRangeScalar(0.f, proxy->width() / 2.f);
srcRect.fRight = random->nextRangeScalar(0.f, proxy->width()) + proxy->width() / 2.f;
srcRect.fTop = random->nextRangeScalar(0.f, proxy->height() / 2.f);
srcRect.fBottom = random->nextRangeScalar(0.f, proxy->height()) + proxy->height() / 2.f;
SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random);
GrColor color = SkColorToPremulGrColor(random->nextU());
GrSamplerState::Filter filter = (GrSamplerState::Filter)random->nextULessThan(
static_cast<uint32_t>(GrSamplerState::Filter::kMipMap) + 1);
auto csxf = GrTest::TestColorXform(random);
bool allowSRGBInputs = random->nextBool();
GrAAType aaType = GrAAType::kNone;
if (random->nextBool()) {
aaType = (fsaaType == GrFSAAType::kUnifiedMSAA) ? GrAAType::kMSAA : GrAAType::kCoverage;
}
auto constraint = random->nextBool() ? SkCanvas::kStrict_SrcRectConstraint
: SkCanvas::kFast_SrcRectConstraint;
return GrTextureOp::Make(std::move(proxy), filter, color, srcRect, rect, aaType, constraint,
viewMatrix, std::move(csxf), allowSRGBInputs);
}
#endif
|