aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ops/GrDefaultPathRenderer.cpp
blob: af4546cbb163a27084234220d416ad0996ed8790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrDefaultPathRenderer.h"
#include "GrContext.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawOpTest.h"
#include "GrFixedClip.h"
#include "GrMesh.h"
#include "GrOpFlushState.h"
#include "GrPathUtils.h"
#include "GrSimpleMeshDrawOpHelper.h"
#include "GrSurfaceContextPriv.h"
#include "SkGeometry.h"
#include "SkString.h"
#include "SkStrokeRec.h"
#include "SkTLazy.h"
#include "SkTraceEvent.h"
#include "ops/GrMeshDrawOp.h"
#include "ops/GrRectOpFactory.h"

GrDefaultPathRenderer::GrDefaultPathRenderer() {
}

////////////////////////////////////////////////////////////////////////////////
// Helpers for drawPath

#define STENCIL_OFF     0   // Always disable stencil (even when needed)

static inline bool single_pass_shape(const GrShape& shape) {
#if STENCIL_OFF
    return true;
#else
    // Inverse fill is always two pass.
    if (shape.inverseFilled()) {
        return false;
    }
    // This path renderer only accepts simple fill paths or stroke paths that are either hairline
    // or have a stroke width small enough to treat as hairline. Hairline paths are always single
    // pass. Filled paths are single pass if they're convex.
    if (shape.style().isSimpleFill()) {
        return shape.knownToBeConvex();
    }
    return true;
#endif
}

GrPathRenderer::StencilSupport
GrDefaultPathRenderer::onGetStencilSupport(const GrShape& shape) const {
    if (single_pass_shape(shape)) {
        return GrPathRenderer::kNoRestriction_StencilSupport;
    } else {
        return GrPathRenderer::kStencilOnly_StencilSupport;
    }
}

namespace {

class PathGeoBuilder {
public:
    PathGeoBuilder(GrPrimitiveType primitiveType, GrMeshDrawOp::Target* target,
                   GrGeometryProcessor* geometryProcessor, const GrPipeline* pipeline,
                   const GrPipeline::FixedDynamicState* fixedDynamicState)
            : fMesh(primitiveType)
            , fTarget(target)
            , fVertexStride(sizeof(SkPoint))
            , fGeometryProcessor(geometryProcessor)
            , fPipeline(pipeline)
            , fFixedDynamicState(fixedDynamicState)
            , fIndexBuffer(nullptr)
            , fFirstIndex(0)
            , fIndicesInChunk(0)
            , fIndices(nullptr) {
        this->allocNewBuffers();
    }

    ~PathGeoBuilder() {
        this->emitMeshAndPutBackReserve();
    }

    /**
     *  Path verbs
     */
    void moveTo(const SkPoint& p) {
        needSpace(1);

        fSubpathIndexStart = this->currentIndex();
        *(fCurVert++) = p;
    }

    void addLine(const SkPoint& p) {
        needSpace(1, this->indexScale());

        if (this->isIndexed()) {
            uint16_t prevIdx = this->currentIndex() - 1;
            appendCountourEdgeIndices(prevIdx);
        }
        *(fCurVert++) = p;
    }

    void addQuad(const SkPoint pts[], SkScalar srcSpaceTolSqd, SkScalar srcSpaceTol) {
        this->needSpace(GrPathUtils::kMaxPointsPerCurve,
                        GrPathUtils::kMaxPointsPerCurve * this->indexScale());

        // First pt of quad is the pt we ended on in previous step
        uint16_t firstQPtIdx = this->currentIndex() - 1;
        uint16_t numPts = (uint16_t)GrPathUtils::generateQuadraticPoints(
                pts[0], pts[1], pts[2], srcSpaceTolSqd, &fCurVert,
                GrPathUtils::quadraticPointCount(pts, srcSpaceTol));
        if (this->isIndexed()) {
            for (uint16_t i = 0; i < numPts; ++i) {
                appendCountourEdgeIndices(firstQPtIdx + i);
            }
        }
    }

    void addConic(SkScalar weight, const SkPoint pts[], SkScalar srcSpaceTolSqd,
                  SkScalar srcSpaceTol) {
        SkAutoConicToQuads converter;
        const SkPoint* quadPts = converter.computeQuads(pts, weight, srcSpaceTol);
        for (int i = 0; i < converter.countQuads(); ++i) {
            this->addQuad(quadPts + i * 2, srcSpaceTolSqd, srcSpaceTol);
        }
    }

    void addCubic(const SkPoint pts[], SkScalar srcSpaceTolSqd, SkScalar srcSpaceTol) {
        this->needSpace(GrPathUtils::kMaxPointsPerCurve,
                        GrPathUtils::kMaxPointsPerCurve * this->indexScale());

        // First pt of cubic is the pt we ended on in previous step
        uint16_t firstCPtIdx = this->currentIndex() - 1;
        uint16_t numPts = (uint16_t) GrPathUtils::generateCubicPoints(
                pts[0], pts[1], pts[2], pts[3], srcSpaceTolSqd, &fCurVert,
                GrPathUtils::cubicPointCount(pts, srcSpaceTol));
        if (this->isIndexed()) {
            for (uint16_t i = 0; i < numPts; ++i) {
                appendCountourEdgeIndices(firstCPtIdx + i);
            }
        }
    }

    void addPath(const SkPath& path, SkScalar srcSpaceTol) {
        SkScalar srcSpaceTolSqd = srcSpaceTol * srcSpaceTol;

        SkPath::Iter iter(path, false);
        SkPoint pts[4];

        bool done = false;
        while (!done) {
            SkPath::Verb verb = iter.next(pts, false);
            switch (verb) {
                case SkPath::kMove_Verb:
                    this->moveTo(pts[0]);
                    break;
                case SkPath::kLine_Verb:
                    this->addLine(pts[1]);
                    break;
                case SkPath::kConic_Verb:
                    this->addConic(iter.conicWeight(), pts, srcSpaceTolSqd, srcSpaceTol);
                    break;
                case SkPath::kQuad_Verb:
                    this->addQuad(pts, srcSpaceTolSqd, srcSpaceTol);
                    break;
                case SkPath::kCubic_Verb:
                    this->addCubic(pts, srcSpaceTolSqd, srcSpaceTol);
                    break;
                case SkPath::kClose_Verb:
                    break;
                case SkPath::kDone_Verb:
                    done = true;
            }
        }
    }

    static bool PathHasMultipleSubpaths(const SkPath& path) {
        bool first = true;

        SkPath::Iter iter(path, false);
        SkPath::Verb verb;

        SkPoint pts[4];
        while ((verb = iter.next(pts, false)) != SkPath::kDone_Verb) {
            if (SkPath::kMove_Verb == verb && !first) {
                return true;
            }
            first = false;
        }
        return false;
    }

private:
    /**
     *  Derived properties
     *  TODO: Cache some of these for better performance, rather than re-computing?
     */
    bool isIndexed() const {
        return GrPrimitiveType::kLines == fMesh.primitiveType() ||
               GrPrimitiveType::kTriangles == fMesh.primitiveType();
    }
    bool isHairline() const {
        return GrPrimitiveType::kLines == fMesh.primitiveType() ||
               GrPrimitiveType::kLineStrip == fMesh.primitiveType();
    }
    int indexScale() const {
        switch (fMesh.primitiveType()) {
            case GrPrimitiveType::kLines:
                return 2;
            case GrPrimitiveType::kTriangles:
                return 3;
            default:
                return 0;
        }
    }

    uint16_t currentIndex() const { return fCurVert - fVertices; }

    // Allocate vertex and (possibly) index buffers
    void allocNewBuffers() {
        // Ensure that we always get enough verts for a worst-case quad/cubic, plus leftover points
        // from previous mesh piece (up to two verts to continue fanning). If we can't get that
        // many, ask for a much larger number. This needs to be fairly big to handle  quads/cubics,
        // which have a worst-case of 1k points.
        static const int kMinVerticesPerChunk = GrPathUtils::kMaxPointsPerCurve + 2;
        static const int kFallbackVerticesPerChunk = 16384;

        fVertices = static_cast<SkPoint*>(fTarget->makeVertexSpaceAtLeast(fVertexStride,
                                                                          kMinVerticesPerChunk,
                                                                          kFallbackVerticesPerChunk,
                                                                          &fVertexBuffer,
                                                                          &fFirstVertex,
                                                                          &fVerticesInChunk));

        if (this->isIndexed()) {
            // Similar to above: Ensure we get enough indices for one worst-case quad/cubic.
            // No extra indices are needed for stitching, though. If we can't get that many, ask
            // for enough to match our large vertex request.
            const int kMinIndicesPerChunk = GrPathUtils::kMaxPointsPerCurve * this->indexScale();
            const int kFallbackIndicesPerChunk = kFallbackVerticesPerChunk * this->indexScale();

            fIndices = fTarget->makeIndexSpaceAtLeast(kMinIndicesPerChunk, kFallbackIndicesPerChunk,
                                                      &fIndexBuffer, &fFirstIndex,
                                                      &fIndicesInChunk);
        }

        fCurVert = fVertices;
        fCurIdx = fIndices;
        fSubpathIndexStart = 0;
    }

    void appendCountourEdgeIndices(uint16_t edgeV0Idx) {
        // When drawing lines we're appending line segments along the countour. When applying the
        // other fill rules we're drawing triangle fans around the start of the current (sub)path.
        if (!this->isHairline()) {
            *(fCurIdx++) = fSubpathIndexStart;
        }
        *(fCurIdx++) = edgeV0Idx;
        *(fCurIdx++) = edgeV0Idx + 1;
    }

    // Emits a single draw with all accumulated vertex/index data
    void emitMeshAndPutBackReserve() {
        int vertexCount = fCurVert - fVertices;
        int indexCount = fCurIdx - fIndices;
        SkASSERT(vertexCount <= fVerticesInChunk);
        SkASSERT(indexCount <= fIndicesInChunk);

        if (this->isIndexed() ? SkToBool(indexCount) : SkToBool(vertexCount)) {
            if (!this->isIndexed()) {
                fMesh.setNonIndexedNonInstanced(vertexCount);
            } else {
                fMesh.setIndexed(fIndexBuffer, indexCount, fFirstIndex, 0, vertexCount - 1,
                                 GrPrimitiveRestart::kNo);
            }
            fMesh.setVertexData(fVertexBuffer, fFirstVertex);
            fTarget->draw(fGeometryProcessor, fPipeline, fFixedDynamicState, fMesh);
        }

        fTarget->putBackIndices((size_t)(fIndicesInChunk - indexCount));
        fTarget->putBackVertices((size_t)(fVerticesInChunk - vertexCount), fVertexStride);
    }

    void needSpace(int vertsNeeded, int indicesNeeded = 0) {
        if (fCurVert + vertsNeeded > fVertices + fVerticesInChunk ||
            fCurIdx + indicesNeeded > fIndices + fIndicesInChunk) {
            // We are about to run out of space (possibly)

            // To maintain continuity, we need to remember one or two points from the current mesh.
            // Lines only need the last point, fills need the first point from the current contour.
            // We always grab both here, and append the ones we need at the end of this process.
            SkPoint lastPt = *(fCurVert - 1);
            SkASSERT(fSubpathIndexStart < fVerticesInChunk);
            SkPoint subpathStartPt = fVertices[fSubpathIndexStart];

            // Draw the mesh we've accumulated, and put back any unused space
            this->emitMeshAndPutBackReserve();

            // Get new buffers
            this->allocNewBuffers();

            // Append copies of the points we saved so the two meshes will weld properly
            if (!this->isHairline()) {
                *(fCurVert++) = subpathStartPt;
            }
            *(fCurVert++) = lastPt;
        }
    }

    GrMesh fMesh;
    GrMeshDrawOp::Target* fTarget;
    size_t fVertexStride;
    GrGeometryProcessor* fGeometryProcessor;
    const GrPipeline* fPipeline;
    const GrPipeline::FixedDynamicState* fFixedDynamicState;

    const GrBuffer* fVertexBuffer;
    int fFirstVertex;
    int fVerticesInChunk;
    SkPoint* fVertices;
    SkPoint* fCurVert;

    const GrBuffer* fIndexBuffer;
    int fFirstIndex;
    int fIndicesInChunk;
    uint16_t* fIndices;
    uint16_t* fCurIdx;
    uint16_t fSubpathIndexStart;
};

class DefaultPathOp final : public GrMeshDrawOp {
private:
    using Helper = GrSimpleMeshDrawOpHelperWithStencil;

public:
    DEFINE_OP_CLASS_ID

    static std::unique_ptr<GrDrawOp> Make(GrContext* context,
                                          GrPaint&& paint,
                                          const SkPath& path,
                                          SkScalar tolerance,
                                          uint8_t coverage,
                                          const SkMatrix& viewMatrix,
                                          bool isHairline,
                                          GrAAType aaType,
                                          const SkRect& devBounds,
                                          const GrUserStencilSettings* stencilSettings) {
        return Helper::FactoryHelper<DefaultPathOp>(context, std::move(paint), path, tolerance,
                                                    coverage, viewMatrix, isHairline, aaType,
                                                    devBounds, stencilSettings);
    }

    const char* name() const override { return "DefaultPathOp"; }

    void visitProxies(const VisitProxyFunc& func) const override {
        fHelper.visitProxies(func);
    }

    SkString dumpInfo() const override {
        SkString string;
        string.appendf("Color: 0x%08x Count: %d\n", fColor, fPaths.count());
        for (const auto& path : fPaths) {
            string.appendf("Tolerance: %.2f\n", path.fTolerance);
        }
        string += fHelper.dumpInfo();
        string += INHERITED::dumpInfo();
        return string;
    }

    DefaultPathOp(const Helper::MakeArgs& helperArgs, GrColor color, const SkPath& path,
                  SkScalar tolerance, uint8_t coverage, const SkMatrix& viewMatrix, bool isHairline,
                  GrAAType aaType, const SkRect& devBounds,
                  const GrUserStencilSettings* stencilSettings)
            : INHERITED(ClassID())
            , fHelper(helperArgs, aaType, stencilSettings)
            , fColor(color)
            , fCoverage(coverage)
            , fViewMatrix(viewMatrix)
            , fIsHairline(isHairline) {
        fPaths.emplace_back(PathData{path, tolerance});

        this->setBounds(devBounds, HasAABloat::kNo,
                        isHairline ? IsZeroArea::kYes : IsZeroArea::kNo);
    }

    FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }

    RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
                                GrPixelConfigIsClamped dstIsClamped) override {
        GrProcessorAnalysisCoverage gpCoverage =
                this->coverage() == 0xFF ? GrProcessorAnalysisCoverage::kNone
                                         : GrProcessorAnalysisCoverage::kSingleChannel;
        return fHelper.xpRequiresDstTexture(caps, clip, dstIsClamped, gpCoverage, &fColor);
    }

private:
    void onPrepareDraws(Target* target) override {
        sk_sp<GrGeometryProcessor> gp;
        {
            using namespace GrDefaultGeoProcFactory;
            Color color(this->color());
            Coverage coverage(this->coverage());
            LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
                                                              : LocalCoords::kUnused_Type);
            gp = GrDefaultGeoProcFactory::Make(color, coverage, localCoords, this->viewMatrix());
        }

        SkASSERT(gp->debugOnly_vertexStride() == sizeof(SkPoint));

        int instanceCount = fPaths.count();

        // We avoid indices when we have a single hairline contour.
        bool isIndexed = !this->isHairline() || instanceCount > 1 ||
                         PathGeoBuilder::PathHasMultipleSubpaths(fPaths[0].fPath);

        // determine primitiveType
        GrPrimitiveType primitiveType;
        if (this->isHairline()) {
            primitiveType = isIndexed ? GrPrimitiveType::kLines : GrPrimitiveType::kLineStrip;
        } else {
            primitiveType = GrPrimitiveType::kTriangles;
        }
        auto pipe = fHelper.makePipeline(target);
        PathGeoBuilder pathGeoBuilder(primitiveType, target, gp.get(), pipe.fPipeline,
                                      pipe.fFixedDynamicState);

        // fill buffers
        for (int i = 0; i < instanceCount; i++) {
            const PathData& args = fPaths[i];
            pathGeoBuilder.addPath(args.fPath, args.fTolerance);
        }
    }

    bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
        DefaultPathOp* that = t->cast<DefaultPathOp>();
        if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
            return false;
        }

        if (this->color() != that->color()) {
            return false;
        }

        if (this->coverage() != that->coverage()) {
            return false;
        }

        if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
            return false;
        }

        if (this->isHairline() != that->isHairline()) {
            return false;
        }

        fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
        this->joinBounds(*that);
        return true;
    }

    GrColor color() const { return fColor; }
    uint8_t coverage() const { return fCoverage; }
    const SkMatrix& viewMatrix() const { return fViewMatrix; }
    bool isHairline() const { return fIsHairline; }

    struct PathData {
        SkPath fPath;
        SkScalar fTolerance;
    };

    SkSTArray<1, PathData, true> fPaths;
    Helper fHelper;
    GrColor fColor;
    uint8_t fCoverage;
    SkMatrix fViewMatrix;
    bool fIsHairline;

    typedef GrMeshDrawOp INHERITED;
};

}  // anonymous namespace

bool GrDefaultPathRenderer::internalDrawPath(GrRenderTargetContext* renderTargetContext,
                                             GrPaint&& paint,
                                             GrAAType aaType,
                                             const GrUserStencilSettings& userStencilSettings,
                                             const GrClip& clip,
                                             const SkMatrix& viewMatrix,
                                             const GrShape& shape,
                                             bool stencilOnly) {
    GrContext* context = renderTargetContext->surfPriv().getContext();

    SkASSERT(GrAAType::kCoverage != aaType);
    SkPath path;
    shape.asPath(&path);

    SkScalar hairlineCoverage;
    uint8_t newCoverage = 0xff;
    bool isHairline = false;
    if (IsStrokeHairlineOrEquivalent(shape.style(), viewMatrix, &hairlineCoverage)) {
        newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
        isHairline = true;
    } else {
        SkASSERT(shape.style().isSimpleFill());
    }

    int                          passCount = 0;
    const GrUserStencilSettings* passes[2];
    bool                         reverse = false;
    bool                         lastPassIsBounds;

    if (isHairline) {
        passCount = 1;
        if (stencilOnly) {
            passes[0] = &gDirectToStencil;
        } else {
            passes[0] = &userStencilSettings;
        }
        lastPassIsBounds = false;
    } else {
        if (single_pass_shape(shape)) {
            passCount = 1;
            if (stencilOnly) {
                passes[0] = &gDirectToStencil;
            } else {
                passes[0] = &userStencilSettings;
            }
            lastPassIsBounds = false;
        } else {
            switch (path.getFillType()) {
                case SkPath::kInverseEvenOdd_FillType:
                    reverse = true;
                    // fallthrough
                case SkPath::kEvenOdd_FillType:
                    passes[0] = &gEOStencilPass;
                    if (stencilOnly) {
                        passCount = 1;
                        lastPassIsBounds = false;
                    } else {
                        passCount = 2;
                        lastPassIsBounds = true;
                        if (reverse) {
                            passes[1] = &gInvEOColorPass;
                        } else {
                            passes[1] = &gEOColorPass;
                        }
                    }
                    break;

                case SkPath::kInverseWinding_FillType:
                    reverse = true;
                    // fallthrough
                case SkPath::kWinding_FillType:
                    passes[0] = &gWindStencilPass;
                    passCount = 2;
                    if (stencilOnly) {
                        lastPassIsBounds = false;
                        --passCount;
                    } else {
                        lastPassIsBounds = true;
                        if (reverse) {
                            passes[passCount-1] = &gInvWindColorPass;
                        } else {
                            passes[passCount-1] = &gWindColorPass;
                        }
                    }
                    break;
                default:
                    SkDEBUGFAIL("Unknown path fFill!");
                    return false;
            }
        }
    }

    SkScalar tol = GrPathUtils::kDefaultTolerance;
    SkScalar srcSpaceTol = GrPathUtils::scaleToleranceToSrc(tol, viewMatrix, path.getBounds());

    SkRect devBounds;
    GetPathDevBounds(path,
                     renderTargetContext->asRenderTargetProxy()->worstCaseWidth(),
                     renderTargetContext->asRenderTargetProxy()->worstCaseHeight(),
                     viewMatrix, &devBounds);

    for (int p = 0; p < passCount; ++p) {
        if (lastPassIsBounds && (p == passCount-1)) {
            SkRect bounds;
            SkMatrix localMatrix = SkMatrix::I();
            if (reverse) {
                // draw over the dev bounds (which will be the whole dst surface for inv fill).
                bounds = devBounds;
                SkMatrix vmi;
                // mapRect through persp matrix may not be correct
                if (!viewMatrix.hasPerspective() && viewMatrix.invert(&vmi)) {
                    vmi.mapRect(&bounds);
                } else {
                    if (!viewMatrix.invert(&localMatrix)) {
                        return false;
                    }
                }
            } else {
                bounds = path.getBounds();
            }
            const SkMatrix& viewM = (reverse && viewMatrix.hasPerspective()) ? SkMatrix::I() :
                                                                               viewMatrix;
            renderTargetContext->addDrawOp(
                    clip,
                    GrRectOpFactory::MakeNonAAFillWithLocalMatrix(
                            context, std::move(paint), viewM, localMatrix,
                            bounds, aaType, passes[p]));
        } else {
            bool stencilPass = stencilOnly || passCount > 1;
            std::unique_ptr<GrDrawOp> op;
            if (stencilPass) {
                GrPaint stencilPaint;
                stencilPaint.setXPFactory(GrDisableColorXPFactory::Get());
                op = DefaultPathOp::Make(context, std::move(stencilPaint), path, srcSpaceTol,
                                         newCoverage, viewMatrix, isHairline, aaType, devBounds,
                                         passes[p]);
            } else {
                op = DefaultPathOp::Make(context, std::move(paint), path, srcSpaceTol, newCoverage,
                                         viewMatrix, isHairline, aaType, devBounds, passes[p]);
            }
            renderTargetContext->addDrawOp(clip, std::move(op));
        }
    }
    return true;
}

GrPathRenderer::CanDrawPath
GrDefaultPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    bool isHairline = IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr);
    // If we aren't a single_pass_shape or hairline, we require stencil buffers.
    if (!(single_pass_shape(*args.fShape) || isHairline) && args.fCaps->avoidStencilBuffers()) {
        return CanDrawPath::kNo;
    }
    // This can draw any path with any simple fill style but doesn't do coverage-based antialiasing.
    if (GrAAType::kCoverage == args.fAAType ||
        (!args.fShape->style().isSimpleFill() && !isHairline)) {
        return CanDrawPath::kNo;
    }
    // This is the fallback renderer for when a path is too complicated for the others to draw.
    return CanDrawPath::kAsBackup;
}

bool GrDefaultPathRenderer::onDrawPath(const DrawPathArgs& args) {
    GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
                              "GrDefaultPathRenderer::onDrawPath");
    return this->internalDrawPath(args.fRenderTargetContext,
                                  std::move(args.fPaint),
                                  args.fAAType,
                                  *args.fUserStencilSettings,
                                  *args.fClip,
                                  *args.fViewMatrix,
                                  *args.fShape,
                                  false);
}

void GrDefaultPathRenderer::onStencilPath(const StencilPathArgs& args) {
    GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
                              "GrDefaultPathRenderer::onStencilPath");
    SkASSERT(!args.fShape->inverseFilled());

    GrPaint paint;
    paint.setXPFactory(GrDisableColorXPFactory::Get());

    this->internalDrawPath(args.fRenderTargetContext, std::move(paint), args.fAAType,
                           GrUserStencilSettings::kUnused, *args.fClip, *args.fViewMatrix,
                           *args.fShape, true);
}

///////////////////////////////////////////////////////////////////////////////////////////////////

#if GR_TEST_UTILS

GR_DRAW_OP_TEST_DEFINE(DefaultPathOp) {
    SkMatrix viewMatrix = GrTest::TestMatrix(random);

    // For now just hairlines because the other types of draws require two ops.
    // TODO we should figure out a way to combine the stencil and cover steps into one op.
    GrStyle style(SkStrokeRec::kHairline_InitStyle);
    SkPath path = GrTest::TestPath(random);

    // Compute srcSpaceTol
    SkRect bounds = path.getBounds();
    SkScalar tol = GrPathUtils::kDefaultTolerance;
    SkScalar srcSpaceTol = GrPathUtils::scaleToleranceToSrc(tol, viewMatrix, bounds);

    viewMatrix.mapRect(&bounds);
    uint8_t coverage = GrRandomCoverage(random);
    GrAAType aaType = GrAAType::kNone;
    if (GrFSAAType::kUnifiedMSAA == fsaaType && random->nextBool()) {
        aaType = GrAAType::kMSAA;
    }
    return DefaultPathOp::Make(context, std::move(paint), path, srcSpaceTol, coverage, viewMatrix,
                               true, aaType, bounds, GrGetRandomStencil(random, context));
}

#endif