aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ops/GrAnalyticRectOp.cpp
blob: 358b5622e32e95be95f0bbbae1e9e5a0293f92c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrAnalyticRectOp.h"

#include "GrDrawOpTest.h"
#include "GrGeometryProcessor.h"
#include "GrOpFlushState.h"
#include "GrProcessor.h"
#include "GrResourceProvider.h"
#include "SkRRect.h"
#include "SkStrokeRec.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLUtil.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLVertexShaderBuilder.h"
#include "ops/GrMeshDrawOp.h"

namespace {

struct RectVertex {
    SkPoint fPos;
    GrColor fColor;
    SkPoint fCenter;
    SkVector fDownDir;
    SkScalar fHalfWidth;
    SkScalar fHalfHeight;
};
}

///////////////////////////////////////////////////////////////////////////////

/**
 * The output of this effect is the input color and coverage for an arbitrarily oriented rect. The
 * rect is specified as:
 *      Center of the rect
 *      Unit vector point down the height of the rect
 *      Half width + 0.5
 *      Half height + 0.5
 * The center and vector are stored in a vec4 varying ("RectEdge") with the
 * center in the xy components and the vector in the zw components.
 * The munged width and height are stored in a vec2 varying ("WidthHeight")
 * with the width in x and the height in y.
 */
class RectGeometryProcessor : public GrGeometryProcessor {
public:
    RectGeometryProcessor(const SkMatrix& localMatrix) : fLocalMatrix(localMatrix) {
        this->initClassID<RectGeometryProcessor>();
        fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType,
                                             kHigh_GrSLPrecision);
        fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType);
        fInRectEdge = &this->addVertexAttrib("inRectEdge", kVec4f_GrVertexAttribType);
        fInWidthHeight = &this->addVertexAttrib("inWidthHeight", kVec2f_GrVertexAttribType);
    }

    bool implementsDistanceVector() const override { return true; }

    const Attribute* inPosition() const { return fInPosition; }
    const Attribute* inColor() const { return fInColor; }
    const Attribute* inRectEdge() const { return fInRectEdge; }
    const Attribute* inWidthHeight() const { return fInWidthHeight; }

    const SkMatrix& localMatrix() const { return fLocalMatrix; }

    ~RectGeometryProcessor() override {}

    const char* name() const override { return "RectEdge"; }

    class GLSLProcessor : public GrGLSLGeometryProcessor {
    public:
        GLSLProcessor() {}

        void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
            const RectGeometryProcessor& rgp = args.fGP.cast<RectGeometryProcessor>();
            GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder;
            GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
            GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;

            // emit attributes
            varyingHandler->emitAttributes(rgp);

            // setup the varying for the position
            GrGLSLVertToFrag positionVary(kVec2f_GrSLType);
            varyingHandler->addVarying("Position", &positionVary);
            vertBuilder->codeAppendf("%s = %s;", positionVary.vsOut(), rgp.inPosition()->fName);

            // setup the varying for the center point and the unit vector that points down the
            // height of the rect
            GrGLSLVertToFrag rectEdgeVary(kVec4f_GrSLType);
            varyingHandler->addVarying("RectEdge", &rectEdgeVary);
            vertBuilder->codeAppendf("%s = %s;", rectEdgeVary.vsOut(), rgp.inRectEdge()->fName);

            // setup the varying for the width/2+.5 and height/2+.5
            GrGLSLVertToFrag widthHeightVary(kVec2f_GrSLType);
            varyingHandler->addVarying("WidthHeight", &widthHeightVary);
            vertBuilder->codeAppendf("%s = %s;", widthHeightVary.vsOut(),
                                     rgp.inWidthHeight()->fName);

            GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder;

            // setup pass through color
            varyingHandler->addPassThroughAttribute(rgp.inColor(), args.fOutputColor);

            // Setup position
            this->setupPosition(vertBuilder, gpArgs, rgp.inPosition()->fName);

            // emit transforms
            this->emitTransforms(vertBuilder,
                                 varyingHandler,
                                 uniformHandler,
                                 gpArgs->fPositionVar,
                                 rgp.inPosition()->fName,
                                 rgp.localMatrix(),
                                 args.fFPCoordTransformHandler);

            // TODO: compute all these offsets, spans, and scales in the VS
            fragBuilder->codeAppendf("float insetW = min(1.0, %s.x) - 0.5;",
                                     widthHeightVary.fsIn());
            fragBuilder->codeAppendf("float insetH = min(1.0, %s.y) - 0.5;",
                                     widthHeightVary.fsIn());
            fragBuilder->codeAppend("float outset = 0.5;");
            // For rects > 1 pixel wide and tall the span's are noops (i.e., 1.0). For rects
            // < 1 pixel wide or tall they serve to normalize the < 1 ramp to a 0 .. 1 range.
            fragBuilder->codeAppend("float spanW = insetW + outset;");
            fragBuilder->codeAppend("float spanH = insetH + outset;");
            // For rects < 1 pixel wide or tall, these scale factors are used to cap the maximum
            // value of coverage that is used. In other words it is the coverage that is
            // used in the interior of the rect after the ramp.
            fragBuilder->codeAppend("float scaleW = min(1.0, 2.0*insetW/spanW);");
            fragBuilder->codeAppend("float scaleH = min(1.0, 2.0*insetH/spanH);");
            // Compute the coverage for the rect's width
            fragBuilder->codeAppendf("vec2 offset = %s.xy - %s.xy;", positionVary.fsIn(),
                                     rectEdgeVary.fsIn());
            fragBuilder->codeAppendf("float perpDot = abs(offset.x * %s.w - offset.y * %s.z);",
                                     rectEdgeVary.fsIn(), rectEdgeVary.fsIn());

            if (args.fDistanceVectorName) {
                fragBuilder->codeAppendf("float widthDistance = %s.x - perpDot;",
                                         widthHeightVary.fsIn());
            }

            fragBuilder->codeAppendf(
                    "float coverage = scaleW*clamp((%s.x-perpDot)/spanW, 0.0, 1.0);",
                    widthHeightVary.fsIn());
            // Compute the coverage for the rect's height and merge with the width
            fragBuilder->codeAppendf("perpDot = abs(dot(offset, %s.zw));", rectEdgeVary.fsIn());

            if (args.fDistanceVectorName) {
                fragBuilder->codeAppendf("float heightDistance = %s.y - perpDot;",
                                         widthHeightVary.fsIn());
            }

            fragBuilder->codeAppendf(
                    "coverage = coverage*scaleH*clamp((%s.y-perpDot)/spanH, 0.0, 1.0);",
                    widthHeightVary.fsIn());

            fragBuilder->codeAppendf("%s = vec4(coverage);", args.fOutputCoverage);

            if (args.fDistanceVectorName) {
                fragBuilder->codeAppend("// Calculating distance vector\n");
                fragBuilder->codeAppend("vec2 dvAxis;");
                fragBuilder->codeAppend("float dvLength;");

                fragBuilder->codeAppend("if (heightDistance < widthDistance) {");
                fragBuilder->codeAppendf("    dvAxis = %s.zw;", rectEdgeVary.fsIn());
                fragBuilder->codeAppend("     dvLength = heightDistance;");
                fragBuilder->codeAppend("} else {");
                fragBuilder->codeAppendf("    dvAxis = vec2(-%s.w, %s.z);", rectEdgeVary.fsIn(),
                                         rectEdgeVary.fsIn());
                fragBuilder->codeAppend("     dvLength = widthDistance;");
                fragBuilder->codeAppend("}");

                fragBuilder->codeAppend("float dvSign = sign(dot(offset, dvAxis));");
                fragBuilder->codeAppendf("%s = vec4(dvSign * dvAxis, dvLength, 0.0);",
                                         args.fDistanceVectorName);
            }
        }

        static void GenKey(const GrGeometryProcessor& gp,
                           const GrShaderCaps&,
                           GrProcessorKeyBuilder* b) {
            b->add32(0x0);
        }

        void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc,
                     FPCoordTransformIter&& transformIter) override {
            const RectGeometryProcessor& rgp = primProc.cast<RectGeometryProcessor>();
            this->setTransformDataHelper(rgp.fLocalMatrix, pdman, &transformIter);
        }

    private:
        typedef GrGLSLGeometryProcessor INHERITED;
    };

    void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
        GLSLProcessor::GenKey(*this, caps, b);
    }

    GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override {
        return new GLSLProcessor();
    }

private:
    SkMatrix fLocalMatrix;

    const Attribute* fInPosition;
    const Attribute* fInColor;
    const Attribute* fInRectEdge;
    const Attribute* fInWidthHeight;

    GR_DECLARE_GEOMETRY_PROCESSOR_TEST;

    typedef GrGeometryProcessor INHERITED;
};

GR_DEFINE_GEOMETRY_PROCESSOR_TEST(RectGeometryProcessor);

#if GR_TEST_UTILS
sk_sp<GrGeometryProcessor> RectGeometryProcessor::TestCreate(GrProcessorTestData* d) {
    return sk_sp<GrGeometryProcessor>(new RectGeometryProcessor(GrTest::TestMatrix(d->fRandom)));
}
#endif

///////////////////////////////////////////////////////////////////////////////

class AnalyticRectOp final : public GrLegacyMeshDrawOp {
public:
    DEFINE_OP_CLASS_ID

    AnalyticRectOp(GrColor color, const SkMatrix& viewMatrix, const SkRect& rect,
                   const SkRect& croppedRect, const SkRect& bounds)
            : INHERITED(ClassID()), fViewMatrixIfUsingLocalCoords(viewMatrix) {
        SkPoint center = SkPoint::Make(rect.centerX(), rect.centerY());
        viewMatrix.mapPoints(&center, 1);
        SkScalar halfWidth = viewMatrix.mapRadius(SkScalarHalf(rect.width()));
        SkScalar halfHeight = viewMatrix.mapRadius(SkScalarHalf(rect.height()));
        SkVector downDir = viewMatrix.mapVector(0.0f, 1.0f);
        downDir.normalize();

        SkRect deviceSpaceCroppedRect = croppedRect;
        viewMatrix.mapRect(&deviceSpaceCroppedRect);

        fGeoData.emplace_back(
                Geometry{color, center, downDir, halfWidth, halfHeight, deviceSpaceCroppedRect});

        this->setBounds(bounds, HasAABloat::kYes, IsZeroArea::kNo);
    }

    const char* name() const override { return "AnalyticRectOp"; }

    SkString dumpInfo() const override {
        SkString string;
        for (int i = 0; i < fGeoData.count(); ++i) {
            string.appendf("Color: 0x%08x Rect [C:(%.2f, %.2f) D:<%.2f,%.3f> W/2:%.2f H/2:%.2f]\n",
                           fGeoData[i].fColor, fGeoData[i].fCenter.x(), fGeoData[i].fCenter.y(),
                           fGeoData[i].fDownDir.x(), fGeoData[i].fDownDir.y(),
                           fGeoData[i].fHalfWidth, fGeoData[i].fHalfHeight);
        }
        string.append(DumpPipelineInfo(*this->pipeline()));
        string.append(INHERITED::dumpInfo());
        return string;
    }

private:
    void getProcessorAnalysisInputs(GrProcessorAnalysisColor* color,
                                    GrProcessorAnalysisCoverage* coverage) const override {
        color->setToConstant(fGeoData[0].fColor);
        *coverage = GrProcessorAnalysisCoverage::kSingleChannel;
    }

    void applyPipelineOptimizations(const PipelineOptimizations& optimizations) override {
        optimizations.getOverrideColorIfSet(&fGeoData[0].fColor);
        if (!optimizations.readsLocalCoords()) {
            fViewMatrixIfUsingLocalCoords.reset();
        }
    }

    void onPrepareDraws(Target* target) const override {
        SkMatrix localMatrix;
        if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) {
            return;
        }

        // Setup geometry processor
        sk_sp<GrGeometryProcessor> gp(new RectGeometryProcessor(localMatrix));

        int instanceCount = fGeoData.count();
        size_t vertexStride = gp->getVertexStride();
        SkASSERT(vertexStride == sizeof(RectVertex));
        QuadHelper helper;
        RectVertex* verts =
                reinterpret_cast<RectVertex*>(helper.init(target, vertexStride, instanceCount));
        if (!verts) {
            return;
        }

        for (int i = 0; i < instanceCount; i++) {
            const Geometry& geom = fGeoData[i];

            GrColor color = geom.fColor;
            SkPoint center = geom.fCenter;
            SkVector downDir = geom.fDownDir;
            SkScalar halfWidth = geom.fHalfWidth;
            SkScalar halfHeight = geom.fHalfHeight;
            SkRect croppedRect = geom.fCroppedRect;

            SkVector rightDir;
            downDir.rotateCCW(&rightDir);

            verts[0].fPos = {croppedRect.fLeft, croppedRect.fTop};
            verts[0].fColor = color;
            verts[0].fCenter = center;
            verts[0].fDownDir = downDir;
            verts[0].fHalfWidth = halfWidth;
            verts[0].fHalfHeight = halfHeight;

            verts[1].fPos = {croppedRect.fRight, croppedRect.fTop};
            verts[1].fColor = color;
            verts[1].fCenter = center;
            verts[1].fDownDir = downDir;
            verts[1].fHalfWidth = halfWidth;
            verts[1].fHalfHeight = halfHeight;

            verts[2].fPos = {croppedRect.fRight, croppedRect.fBottom};
            verts[2].fColor = color;
            verts[2].fCenter = center;
            verts[2].fDownDir = downDir;
            verts[2].fHalfWidth = halfWidth;
            verts[2].fHalfHeight = halfHeight;

            verts[3].fPos = {croppedRect.fLeft, croppedRect.fBottom};
            verts[3].fColor = color;
            verts[3].fCenter = center;
            verts[3].fDownDir = downDir;
            verts[3].fHalfWidth = halfWidth;
            verts[3].fHalfHeight = halfHeight;

            verts += kVerticesPerQuad;
        }
        helper.recordDraw(target, gp.get(), this->pipeline());
    }

    bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
        AnalyticRectOp* that = t->cast<AnalyticRectOp>();
        if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
                                    that->bounds(), caps)) {
            return false;
        }

        if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) {
            return false;
        }

        fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin());
        this->joinBounds(*that);
        return true;
    }

    struct Geometry {
        GrColor fColor;
        SkPoint fCenter;
        SkVector fDownDir;
        SkScalar fHalfWidth;
        SkScalar fHalfHeight;
        SkRect fCroppedRect;
    };

    SkMatrix fViewMatrixIfUsingLocalCoords;
    SkSTArray<1, Geometry, true> fGeoData;

    typedef GrLegacyMeshDrawOp INHERITED;
};

std::unique_ptr<GrLegacyMeshDrawOp> GrAnalyticRectOp::Make(GrColor color,
                                                           const SkMatrix& viewMatrix,
                                                           const SkRect& rect,
                                                           const SkRect& croppedRect,
                                                           const SkRect& bounds) {
    return std::unique_ptr<GrLegacyMeshDrawOp>(
            new AnalyticRectOp(color, viewMatrix, rect, croppedRect, bounds));
}

#if GR_TEST_UTILS

GR_LEGACY_MESH_DRAW_OP_TEST_DEFINE(AnalyticRectOp) {
    SkMatrix viewMatrix = GrTest::TestMatrix(random);
    GrColor color = GrRandomColor(random);
    SkRect rect = GrTest::TestSquare(random);
    SkRect croppedRect = GrTest::TestSquare(random);
    SkRect bounds = GrTest::TestSquare(random);
    return std::unique_ptr<GrLegacyMeshDrawOp>(
            new AnalyticRectOp(color, viewMatrix, rect, croppedRect, bounds));
}

#endif