aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/ops/GrAAHairLinePathRenderer.cpp
blob: 05f1fbd68445f5d503e1487eecfb749613ca6e28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrAAHairLinePathRenderer.h"
#include "GrBuffer.h"
#include "GrCaps.h"
#include "GrClip.h"
#include "GrContext.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrDrawOpTest.h"
#include "GrOpFlushState.h"
#include "GrPathUtils.h"
#include "GrProcessor.h"
#include "GrResourceProvider.h"
#include "GrShape.h"
#include "GrSimpleMeshDrawOpHelper.h"
#include "GrStyle.h"
#include "SkGeometry.h"
#include "SkMatrixPriv.h"
#include "SkPoint3.h"
#include "SkPointPriv.h"
#include "SkRectPriv.h"
#include "SkStroke.h"
#include "SkTemplates.h"
#include "effects/GrBezierEffect.h"
#include "ops/GrMeshDrawOp.h"

#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>

// quadratics are rendered as 5-sided polys in order to bound the
// AA stroke around the center-curve. See comments in push_quad_index_buffer and
// bloat_quad. Quadratics and conics share an index buffer

// lines are rendered as:
//      *______________*
//      |\ -_______   /|
//      | \        \ / |
//      |  *--------*  |
//      | /  ______/ \ |
//      */_-__________\*
// For: 6 vertices and 18 indices (for 6 triangles)

// Each quadratic is rendered as a five sided polygon. This poly bounds
// the quadratic's bounding triangle but has been expanded so that the
// 1-pixel wide area around the curve is inside the poly.
// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
// that is rendered would look like this:
//              b0
//              b
//
//     a0              c0
//      a            c
//       a1       c1
// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
// specified by these 9 indices:
static const uint16_t kQuadIdxBufPattern[] = {
    0, 1, 2,
    2, 4, 3,
    1, 4, 2
};

static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
static const int kQuadNumVertices = 5;
static const int kQuadsNumInIdxBuffer = 256;
GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);

static sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
    GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
    return resourceProvider->findOrCreatePatternedIndexBuffer(
        kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
        gQuadsIndexBufferKey);
}


// Each line segment is rendered as two quads and two triangles.
// p0 and p1 have alpha = 1 while all other points have alpha = 0.
// The four external points are offset 1 pixel perpendicular to the
// line and half a pixel parallel to the line.
//
// p4                  p5
//      p0         p1
// p2                  p3
//
// Each is drawn as six triangles specified by these 18 indices:

static const uint16_t kLineSegIdxBufPattern[] = {
    0, 1, 3,
    0, 3, 2,
    0, 4, 5,
    0, 5, 1,
    0, 2, 4,
    1, 5, 3
};

static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
static const int kLineSegNumVertices = 6;
static const int kLineSegsNumInIdxBuffer = 256;

GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);

static sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
    GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
    return resourceProvider->findOrCreatePatternedIndexBuffer(
        kLineSegIdxBufPattern, kIdxsPerLineSeg,  kLineSegsNumInIdxBuffer, kLineSegNumVertices,
        gLinesIndexBufferKey);
}

// Takes 178th time of logf on Z600 / VC2010
static int get_float_exp(float x) {
    GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
#ifdef SK_DEBUG
    static bool tested;
    if (!tested) {
        tested = true;
        SkASSERT(get_float_exp(0.25f) == -2);
        SkASSERT(get_float_exp(0.3f) == -2);
        SkASSERT(get_float_exp(0.5f) == -1);
        SkASSERT(get_float_exp(1.f) == 0);
        SkASSERT(get_float_exp(2.f) == 1);
        SkASSERT(get_float_exp(2.5f) == 1);
        SkASSERT(get_float_exp(8.f) == 3);
        SkASSERT(get_float_exp(100.f) == 6);
        SkASSERT(get_float_exp(1000.f) == 9);
        SkASSERT(get_float_exp(1024.f) == 10);
        SkASSERT(get_float_exp(3000000.f) == 21);
    }
#endif
    const int* iptr = (const int*)&x;
    return (((*iptr) & 0x7f800000) >> 23) - 127;
}

// Uses the max curvature function for quads to estimate
// where to chop the conic. If the max curvature is not
// found along the curve segment it will return 1 and
// dst[0] is the original conic. If it returns 2 the dst[0]
// and dst[1] are the two new conics.
static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
    SkScalar t = SkFindQuadMaxCurvature(src);
    if (t == 0 || t == 1) {
        if (dst) {
            dst[0].set(src, weight);
        }
        return 1;
    } else {
        if (dst) {
            SkConic conic;
            conic.set(src, weight);
            if (!conic.chopAt(t, dst)) {
                dst[0].set(src, weight);
                return 1;
            }
        }
        return 2;
    }
}

// Calls split_conic on the entire conic and then once more on each subsection.
// Most cases will result in either 1 conic (chop point is not within t range)
// or 3 points (split once and then one subsection is split again).
static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
    SkConic dstTemp[2];
    int conicCnt = split_conic(src, dstTemp, weight);
    if (2 == conicCnt) {
        int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
        conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
    } else {
        dst[0] = dstTemp[0];
    }
    return conicCnt;
}

// returns 0 if quad/conic is degen or close to it
// in this case approx the path with lines
// otherwise returns 1
static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
    static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
    static const SkScalar gDegenerateToLineTolSqd =
        gDegenerateToLineTol * gDegenerateToLineTol;

    if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
        SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
        return 1;
    }

    *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
    if (*dsqd < gDegenerateToLineTolSqd) {
        return 1;
    }

    if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
        return 1;
    }
    return 0;
}

static int is_degen_quad_or_conic(const SkPoint p[3]) {
    SkScalar dsqd;
    return is_degen_quad_or_conic(p, &dsqd);
}

// we subdivide the quads to avoid huge overfill
// if it returns -1 then should be drawn as lines
static int num_quad_subdivs(const SkPoint p[3]) {
    SkScalar dsqd;
    if (is_degen_quad_or_conic(p, &dsqd)) {
        return -1;
    }

    // tolerance of triangle height in pixels
    // tuned on windows  Quadro FX 380 / Z600
    // trade off of fill vs cpu time on verts
    // maybe different when do this using gpu (geo or tess shaders)
    static const SkScalar gSubdivTol = 175 * SK_Scalar1;

    if (dsqd <= gSubdivTol * gSubdivTol) {
        return 0;
    } else {
        static const int kMaxSub = 4;
        // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
        // = log4(d*d/tol*tol)/2
        // = log2(d*d/tol*tol)

        // +1 since we're ignoring the mantissa contribution.
        int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
        log = SkTMin(SkTMax(0, log), kMaxSub);
        return log;
    }
}

/**
 * Generates the lines and quads to be rendered. Lines are always recorded in
 * device space. We will do a device space bloat to account for the 1pixel
 * thickness.
 * Quads are recorded in device space unless m contains
 * perspective, then in they are in src space. We do this because we will
 * subdivide large quads to reduce over-fill. This subdivision has to be
 * performed before applying the perspective matrix.
 */
static int gather_lines_and_quads(const SkPath& path,
                                  const SkMatrix& m,
                                  const SkIRect& devClipBounds,
                                  SkScalar capLength,
                                  bool convertConicsToQuads,
                                  GrAAHairLinePathRenderer::PtArray* lines,
                                  GrAAHairLinePathRenderer::PtArray* quads,
                                  GrAAHairLinePathRenderer::PtArray* conics,
                                  GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
                                  GrAAHairLinePathRenderer::FloatArray* conicWeights) {
    SkPath::Iter iter(path, false);

    int totalQuadCount = 0;
    SkRect bounds;
    SkIRect ibounds;

    bool persp = m.hasPerspective();

    // Whenever a degenerate, zero-length contour is encountered, this code will insert a
    // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
    // suffice for AA square & circle capping.
    int verbsInContour = 0; // Does not count moves
    bool seenZeroLengthVerb = false;
    SkPoint zeroVerbPt;

    // Adds a quad that has already been chopped to the list and checks for quads that are close to
    // lines. Also does a bounding box check. It takes points that are in src space and device
    // space. The src points are only required if the view matrix has perspective.
    auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
                              bool isContourStart) {
        SkRect bounds;
        SkIRect ibounds;
        bounds.setBounds(devPts, 3);
        bounds.outset(SK_Scalar1, SK_Scalar1);
        bounds.roundOut(&ibounds);
        // We only need the src space space pts when not in perspective.
        SkASSERT(srcPts || !persp);
        if (SkIRect::Intersects(devClipBounds, ibounds)) {
            int subdiv = num_quad_subdivs(devPts);
            SkASSERT(subdiv >= -1);
            if (-1 == subdiv) {
                SkPoint* pts = lines->push_back_n(4);
                pts[0] = devPts[0];
                pts[1] = devPts[1];
                pts[2] = devPts[1];
                pts[3] = devPts[2];
                if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
                    seenZeroLengthVerb = true;
                    zeroVerbPt = pts[0];
                }
            } else {
                // when in perspective keep quads in src space
                const SkPoint* qPts = persp ? srcPts : devPts;
                SkPoint* pts = quads->push_back_n(3);
                pts[0] = qPts[0];
                pts[1] = qPts[1];
                pts[2] = qPts[2];
                quadSubdivCnts->push_back() = subdiv;
                totalQuadCount += 1 << subdiv;
            }
        }
    };

    // Applies the view matrix to quad src points and calls the above helper.
    auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
        SkPoint devPts[3];
        m.mapPoints(devPts, srcSpaceQuadPts, 3);
        addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
    };

    for (;;) {
        SkPoint pathPts[4];
        SkPath::Verb verb = iter.next(pathPts, false);
        switch (verb) {
            case SkPath::kConic_Verb:
                if (convertConicsToQuads) {
                    SkScalar weight = iter.conicWeight();
                    SkAutoConicToQuads converter;
                    const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.5f);
                    for (int i = 0; i < converter.countQuads(); ++i) {
                        addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
                    }
                } else {
                    SkConic dst[4];
                    // We chop the conics to create tighter clipping to hide error
                    // that appears near max curvature of very thin conics. Thin
                    // hyperbolas with high weight still show error.
                    int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
                    for (int i = 0; i < conicCnt; ++i) {
                        SkPoint devPts[4];
                        SkPoint* chopPnts = dst[i].fPts;
                        m.mapPoints(devPts, chopPnts, 3);
                        bounds.setBounds(devPts, 3);
                        bounds.outset(SK_Scalar1, SK_Scalar1);
                        bounds.roundOut(&ibounds);
                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
                            if (is_degen_quad_or_conic(devPts)) {
                                SkPoint* pts = lines->push_back_n(4);
                                pts[0] = devPts[0];
                                pts[1] = devPts[1];
                                pts[2] = devPts[1];
                                pts[3] = devPts[2];
                                if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
                                    pts[2] == pts[3]) {
                                    seenZeroLengthVerb = true;
                                    zeroVerbPt = pts[0];
                                }
                            } else {
                                // when in perspective keep conics in src space
                                SkPoint* cPts = persp ? chopPnts : devPts;
                                SkPoint* pts = conics->push_back_n(3);
                                pts[0] = cPts[0];
                                pts[1] = cPts[1];
                                pts[2] = cPts[2];
                                conicWeights->push_back() = dst[i].fW;
                            }
                        }
                    }
                }
                verbsInContour++;
                break;
            case SkPath::kMove_Verb:
                // New contour (and last one was unclosed). If it was just a zero length drawing
                // operation, and we're supposed to draw caps, then add a tiny line.
                if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
                    SkPoint* pts = lines->push_back_n(2);
                    pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
                    pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
                }
                verbsInContour = 0;
                seenZeroLengthVerb = false;
                break;
            case SkPath::kLine_Verb: {
                SkPoint devPts[2];
                m.mapPoints(devPts, pathPts, 2);
                bounds.setBounds(devPts, 2);
                bounds.outset(SK_Scalar1, SK_Scalar1);
                bounds.roundOut(&ibounds);
                if (SkIRect::Intersects(devClipBounds, ibounds)) {
                    SkPoint* pts = lines->push_back_n(2);
                    pts[0] = devPts[0];
                    pts[1] = devPts[1];
                    if (verbsInContour == 0 && pts[0] == pts[1]) {
                        seenZeroLengthVerb = true;
                        zeroVerbPt = pts[0];
                    }
                }
                verbsInContour++;
                break;
            }
            case SkPath::kQuad_Verb: {
                SkPoint choppedPts[5];
                // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
                // When it is degenerate it allows the approximation with lines to work since the
                // chop point (if there is one) will be at the parabola's vertex. In the nearly
                // degenerate the QuadUVMatrix computed for the points is almost singular which
                // can cause rendering artifacts.
                int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
                for (int i = 0; i < n; ++i) {
                    addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
                }
                verbsInContour++;
                break;
            }
            case SkPath::kCubic_Verb: {
                SkPoint devPts[4];
                m.mapPoints(devPts, pathPts, 4);
                bounds.setBounds(devPts, 4);
                bounds.outset(SK_Scalar1, SK_Scalar1);
                bounds.roundOut(&ibounds);
                if (SkIRect::Intersects(devClipBounds, ibounds)) {
                    PREALLOC_PTARRAY(32) q;
                    // We convert cubics to quadratics (for now).
                    // In perspective have to do conversion in src space.
                    if (persp) {
                        SkScalar tolScale =
                            GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
                        GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
                    } else {
                        GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
                    }
                    for (int i = 0; i < q.count(); i += 3) {
                        if (persp) {
                            addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
                        } else {
                            addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
                        }
                    }
                }
                verbsInContour++;
                break;
            }
            case SkPath::kClose_Verb:
                // Contour is closed, so we don't need to grow the starting line, unless it's
                // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
                if (capLength > 0) {
                    if (seenZeroLengthVerb && verbsInContour == 1) {
                        SkPoint* pts = lines->push_back_n(2);
                        pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
                        pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
                    } else if (verbsInContour == 0) {
                        // Contour was (moveTo, close). Add a line.
                        SkPoint devPts[2];
                        m.mapPoints(devPts, pathPts, 1);
                        devPts[1] = devPts[0];
                        bounds.setBounds(devPts, 2);
                        bounds.outset(SK_Scalar1, SK_Scalar1);
                        bounds.roundOut(&ibounds);
                        if (SkIRect::Intersects(devClipBounds, ibounds)) {
                            SkPoint* pts = lines->push_back_n(2);
                            pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
                            pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
                        }
                    }
                }
                break;
            case SkPath::kDone_Verb:
                if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
                    // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
                    // degenerate, we need to draw a line.
                    SkPoint* pts = lines->push_back_n(2);
                    pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
                    pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
                }
                return totalQuadCount;
        }
    }
}

struct LineVertex {
    SkPoint fPos;
    float fCoverage;
};

struct BezierVertex {
    SkPoint fPos;
    union {
        struct {
            SkScalar fKLM[3];
        } fConic;
        SkVector   fQuadCoord;
        struct {
            SkScalar fBogus[4];
        };
    };
};

GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));

static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
                            const SkPoint& ptB, const SkVector& normB,
                            SkPoint* result) {

    SkScalar lineAW = -normA.dot(ptA);
    SkScalar lineBW = -normB.dot(ptB);

    SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
    wInv = SkScalarInvert(wInv);

    result->fX = normA.fY * lineBW - lineAW * normB.fY;
    result->fX *= wInv;

    result->fY = lineAW * normB.fX - normA.fX * lineBW;
    result->fY *= wInv;
}

static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
    // this should be in the src space, not dev coords, when we have perspective
    GrPathUtils::QuadUVMatrix DevToUV(qpts);
    DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
}

static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
                       const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
    SkASSERT(!toDevice == !toSrc);
    // original quad is specified by tri a,b,c
    SkPoint a = qpts[0];
    SkPoint b = qpts[1];
    SkPoint c = qpts[2];

    if (toDevice) {
        toDevice->mapPoints(&a, 1);
        toDevice->mapPoints(&b, 1);
        toDevice->mapPoints(&c, 1);
    }
    // make a new poly where we replace a and c by a 1-pixel wide edges orthog
    // to edges ab and bc:
    //
    //   before       |        after
    //                |              b0
    //         b      |
    //                |
    //                |     a0            c0
    // a         c    |        a1       c1
    //
    // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
    // respectively.
    BezierVertex& a0 = verts[0];
    BezierVertex& a1 = verts[1];
    BezierVertex& b0 = verts[2];
    BezierVertex& c0 = verts[3];
    BezierVertex& c1 = verts[4];

    SkVector ab = b;
    ab -= a;
    SkVector ac = c;
    ac -= a;
    SkVector cb = b;
    cb -= c;

    // We should have already handled degenerates
    SkASSERT(ab.length() > 0 && cb.length() > 0);

    ab.normalize();
    SkVector abN;
    SkPointPriv::SetOrthog(&abN, ab, SkPointPriv::kLeft_Side);
    if (abN.dot(ac) > 0) {
        abN.negate();
    }

    cb.normalize();
    SkVector cbN;
    SkPointPriv::SetOrthog(&cbN, cb, SkPointPriv::kLeft_Side);
    if (cbN.dot(ac) < 0) {
        cbN.negate();
    }

    a0.fPos = a;
    a0.fPos += abN;
    a1.fPos = a;
    a1.fPos -= abN;

    c0.fPos = c;
    c0.fPos += cbN;
    c1.fPos = c;
    c1.fPos -= cbN;

    intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);

    if (toSrc) {
        SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
                                          kQuadNumVertices);
    }
}

// Equations based off of Loop-Blinn Quadratic GPU Rendering
// Input Parametric:
// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
// Output Implicit:
// f(x, y, w) = f(P) = K^2 - LM
// K = dot(k, P), L = dot(l, P), M = dot(m, P)
// k, l, m are calculated in function GrPathUtils::getConicKLM
static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
                             const SkScalar weight) {
    SkMatrix klm;

    GrPathUtils::getConicKLM(p, weight, &klm);

    for (int i = 0; i < kQuadNumVertices; ++i) {
        const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
        klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
    }
}

static void add_conics(const SkPoint p[3],
                       const SkScalar weight,
                       const SkMatrix* toDevice,
                       const SkMatrix* toSrc,
                       BezierVertex** vert) {
    bloat_quad(p, toDevice, toSrc, *vert);
    set_conic_coeffs(p, *vert, weight);
    *vert += kQuadNumVertices;
}

static void add_quads(const SkPoint p[3],
                      int subdiv,
                      const SkMatrix* toDevice,
                      const SkMatrix* toSrc,
                      BezierVertex** vert) {
    SkASSERT(subdiv >= 0);
    if (subdiv) {
        SkPoint newP[5];
        SkChopQuadAtHalf(p, newP);
        add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
        add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
    } else {
        bloat_quad(p, toDevice, toSrc, *vert);
        set_uv_quad(p, *vert);
        *vert += kQuadNumVertices;
    }
}

static void add_line(const SkPoint p[2],
                     const SkMatrix* toSrc,
                     uint8_t coverage,
                     LineVertex** vert) {
    const SkPoint& a = p[0];
    const SkPoint& b = p[1];

    SkVector ortho, vec = b;
    vec -= a;

    SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);

    if (vec.setLength(SK_ScalarHalf)) {
        // Create a vector orthogonal to 'vec' and of unit length
        ortho.fX = 2.0f * vec.fY;
        ortho.fY = -2.0f * vec.fX;

        float floatCoverage = GrNormalizeByteToFloat(coverage);

        if (lengthSqd >= 1.0f) {
            // Relative to points a and b:
            // The inner vertices are inset half a pixel along the line a,b
            (*vert)[0].fPos = a + vec;
            (*vert)[0].fCoverage = floatCoverage;
            (*vert)[1].fPos = b - vec;
            (*vert)[1].fCoverage = floatCoverage;
        } else {
            // The inner vertices are inset a distance of length(a,b) from the outer edge of
            // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
            // The coverage is then modulated by the length. This gives us the correct
            // coverage for rects shorter than a pixel as they get translated subpixel amounts
            // inside of a pixel.
            SkScalar length = SkScalarSqrt(lengthSqd);
            (*vert)[0].fPos = b - vec;
            (*vert)[0].fCoverage = floatCoverage * length;
            (*vert)[1].fPos = a + vec;
            (*vert)[1].fCoverage = floatCoverage * length;
        }
        // Relative to points a and b:
        // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
        // orthogonally.
        (*vert)[2].fPos = a - vec + ortho;
        (*vert)[2].fCoverage = 0;
        (*vert)[3].fPos = b + vec + ortho;
        (*vert)[3].fCoverage = 0;
        (*vert)[4].fPos = a - vec - ortho;
        (*vert)[4].fCoverage = 0;
        (*vert)[5].fPos = b + vec - ortho;
        (*vert)[5].fCoverage = 0;

        if (toSrc) {
            SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
                                              kLineSegNumVertices);
        }
    } else {
        // just make it degenerate and likely offscreen
        for (int i = 0; i < kLineSegNumVertices; ++i) {
            (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
        }
    }

    *vert += kLineSegNumVertices;
}

///////////////////////////////////////////////////////////////////////////////

GrPathRenderer::CanDrawPath
GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
    if (GrAAType::kCoverage != args.fAAType) {
        return CanDrawPath::kNo;
    }

    if (!IsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
        return CanDrawPath::kNo;
    }

    // We don't currently handle dashing in this class though perhaps we should.
    if (args.fShape->style().pathEffect()) {
        return CanDrawPath::kNo;
    }

    if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
        args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
        return CanDrawPath::kYes;
    }

    return CanDrawPath::kNo;
}

template <class VertexType>
bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
{
    SkRect tolDevBounds = devBounds;
    // The bounds ought to be tight, but in perspective the below code runs the verts
    // through the view matrix to get back to dev coords, which can introduce imprecision.
    if (viewMatrix.hasPerspective()) {
        tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
    } else {
        // Non-persp matrices cause this path renderer to draw in device space.
        SkASSERT(viewMatrix.isIdentity());
    }
    SkRect actualBounds;

    VertexType* verts = reinterpret_cast<VertexType*>(vertices);
    bool first = true;
    for (int i = 0; i < vCount; ++i) {
        SkPoint pos = verts[i].fPos;
        // This is a hack to workaround the fact that we move some degenerate segments offscreen.
        if (SK_ScalarMax == pos.fX) {
            continue;
        }
        viewMatrix.mapPoints(&pos, 1);
        if (first) {
            actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
            first = false;
        } else {
            SkRectPriv::GrowToInclude(&actualBounds, pos);
        }
    }
    if (!first) {
        return tolDevBounds.contains(actualBounds);
    }

    return true;
}

namespace {

class AAHairlineOp final : public GrMeshDrawOp {
private:
    using Helper = GrSimpleMeshDrawOpHelperWithStencil;

public:
    DEFINE_OP_CLASS_ID

    static std::unique_ptr<GrDrawOp> Make(GrContext* context,
                                          GrPaint&& paint,
                                          const SkMatrix& viewMatrix,
                                          const SkPath& path,
                                          const GrStyle& style,
                                          const SkIRect& devClipBounds,
                                          const GrUserStencilSettings* stencilSettings) {
        SkScalar hairlineCoverage;
        uint8_t newCoverage = 0xff;
        if (GrPathRenderer::IsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
            newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
        }

        const SkStrokeRec& stroke = style.strokeRec();
        SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;

        return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
                                                   viewMatrix, path,
                                                   devClipBounds, capLength, stencilSettings);
    }

    AAHairlineOp(const Helper::MakeArgs& helperArgs,
                 GrColor color,
                 uint8_t coverage,
                 const SkMatrix& viewMatrix,
                 const SkPath& path,
                 SkIRect devClipBounds,
                 SkScalar capLength,
                 const GrUserStencilSettings* stencilSettings)
            : INHERITED(ClassID())
            , fHelper(helperArgs, GrAAType::kCoverage, stencilSettings)
            , fColor(color)
            , fCoverage(coverage) {
        fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});

        this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
                                   IsZeroArea::kYes);
    }

    const char* name() const override { return "AAHairlineOp"; }

    void visitProxies(const VisitProxyFunc& func) const override {
        fHelper.visitProxies(func);
    }

    SkString dumpInfo() const override {
        SkString string;
        string.appendf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n", fColor, fCoverage,
                       fPaths.count());
        string += INHERITED::dumpInfo();
        string += fHelper.dumpInfo();
        return string;
    }

    FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }

    RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip) override {
        return fHelper.xpRequiresDstTexture(caps, clip, GrProcessorAnalysisCoverage::kSingleChannel,
                                            &fColor);
    }

private:
    void onPrepareDraws(Target*) override;

    typedef SkTArray<SkPoint, true> PtArray;
    typedef SkTArray<int, true> IntArray;
    typedef SkTArray<float, true> FloatArray;

    bool onCombineIfPossible(GrOp* t, const GrCaps& caps) override {
        AAHairlineOp* that = t->cast<AAHairlineOp>();

        if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
            return false;
        }

        if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
            return false;
        }

        // We go to identity if we don't have perspective
        if (this->viewMatrix().hasPerspective() &&
            !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
            return false;
        }

        // TODO we can actually combine hairlines if they are the same color in a kind of bulk
        // method but we haven't implemented this yet
        // TODO investigate going to vertex color and coverage?
        if (this->coverage() != that->coverage()) {
            return false;
        }

        if (this->color() != that->color()) {
            return false;
        }

        if (fHelper.usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
            return false;
        }

        fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
        this->joinBounds(*that);
        return true;
    }

    GrColor color() const { return fColor; }
    uint8_t coverage() const { return fCoverage; }
    const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }

    struct PathData {
        SkMatrix fViewMatrix;
        SkPath fPath;
        SkIRect fDevClipBounds;
        SkScalar fCapLength;
    };

    SkSTArray<1, PathData, true> fPaths;
    Helper fHelper;
    GrColor fColor;
    uint8_t fCoverage;

    typedef GrMeshDrawOp INHERITED;
};

}  // anonymous namespace

void AAHairlineOp::onPrepareDraws(Target* target) {
    // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
    SkMatrix invert;
    if (!this->viewMatrix().invert(&invert)) {
        return;
    }

    // we will transform to identity space if the viewmatrix does not have perspective
    bool hasPerspective = this->viewMatrix().hasPerspective();
    const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
    const SkMatrix* geometryProcessorLocalM = &invert;
    const SkMatrix* toDevice = nullptr;
    const SkMatrix* toSrc = nullptr;
    if (hasPerspective) {
        geometryProcessorViewM = &this->viewMatrix();
        geometryProcessorLocalM = &SkMatrix::I();
        toDevice = &this->viewMatrix();
        toSrc = &invert;
    }

    // This is hand inlined for maximum performance.
    PREALLOC_PTARRAY(128) lines;
    PREALLOC_PTARRAY(128) quads;
    PREALLOC_PTARRAY(128) conics;
    IntArray qSubdivs;
    FloatArray cWeights;
    int quadCount = 0;

    int instanceCount = fPaths.count();
    bool convertConicsToQuads = !target->caps().shaderCaps()->floatIs32Bits();
    for (int i = 0; i < instanceCount; i++) {
        const PathData& args = fPaths[i];
        quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
                                            args.fCapLength, convertConicsToQuads, &lines, &quads,
                                            &conics, &qSubdivs, &cWeights);
    }

    int lineCount = lines.count() / 2;
    int conicCount = conics.count() / 3;
    int quadAndConicCount = conicCount + quadCount;

    static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
    static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
    if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
        return;
    }

    auto pipe = fHelper.makePipeline(target);
    // do lines first
    if (lineCount) {
        sk_sp<GrGeometryProcessor> lineGP;
        {
            using namespace GrDefaultGeoProcFactory;

            Color color(this->color());
            LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
                                                              : LocalCoords::kUnused_Type);
            localCoords.fMatrix = geometryProcessorLocalM;
            lineGP = GrDefaultGeoProcFactory::Make(target->caps().shaderCaps(),
                                                   color, Coverage::kAttribute_Type, localCoords,
                                                   *geometryProcessorViewM);
        }

        sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());

        const GrBuffer* vertexBuffer;
        int firstVertex;

        SkASSERT(sizeof(LineVertex) == lineGP->debugOnly_vertexStride());
        int vertexCount = kLineSegNumVertices * lineCount;
        LineVertex* verts = reinterpret_cast<LineVertex*>(target->makeVertexSpace(
                sizeof(LineVertex), vertexCount, &vertexBuffer, &firstVertex));

        if (!verts|| !linesIndexBuffer) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        for (int i = 0; i < lineCount; ++i) {
            add_line(&lines[2*i], toSrc, this->coverage(), &verts);
        }

        GrMesh mesh(GrPrimitiveType::kTriangles);
        mesh.setIndexedPatterned(linesIndexBuffer.get(), kIdxsPerLineSeg, kLineSegNumVertices,
                                 lineCount, kLineSegsNumInIdxBuffer);
        mesh.setVertexData(vertexBuffer, firstVertex);
        target->draw(lineGP.get(), pipe.fPipeline, pipe.fFixedDynamicState, mesh);
    }

    if (quadCount || conicCount) {
        sk_sp<GrGeometryProcessor> quadGP(GrQuadEffect::Make(this->color(),
                                                             *geometryProcessorViewM,
                                                             GrClipEdgeType::kHairlineAA,
                                                             target->caps(),
                                                             *geometryProcessorLocalM,
                                                             fHelper.usesLocalCoords(),
                                                             this->coverage()));

        sk_sp<GrGeometryProcessor> conicGP(GrConicEffect::Make(this->color(),
                                                               *geometryProcessorViewM,
                                                               GrClipEdgeType::kHairlineAA,
                                                               target->caps(),
                                                               *geometryProcessorLocalM,
                                                               fHelper.usesLocalCoords(),
                                                               this->coverage()));

        const GrBuffer* vertexBuffer;
        int firstVertex;

        sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());

        SkASSERT(sizeof(BezierVertex) == quadGP->debugOnly_vertexStride());
        SkASSERT(sizeof(BezierVertex) == conicGP->debugOnly_vertexStride());
        int vertexCount = kQuadNumVertices * quadAndConicCount;
        void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
                                                 &firstVertex);

        if (!vertices || !quadsIndexBuffer) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        // Setup vertices
        BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);

        int unsubdivQuadCnt = quads.count() / 3;
        for (int i = 0; i < unsubdivQuadCnt; ++i) {
            SkASSERT(qSubdivs[i] >= 0);
            add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
        }

        // Start Conics
        for (int i = 0; i < conicCount; ++i) {
            add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
        }

        if (quadCount > 0) {
            GrMesh mesh(GrPrimitiveType::kTriangles);
            mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
                                     quadCount, kQuadsNumInIdxBuffer);
            mesh.setVertexData(vertexBuffer, firstVertex);
            target->draw(quadGP.get(), pipe.fPipeline, pipe.fFixedDynamicState, mesh);
            firstVertex += quadCount * kQuadNumVertices;
        }

        if (conicCount > 0) {
            GrMesh mesh(GrPrimitiveType::kTriangles);
            mesh.setIndexedPatterned(quadsIndexBuffer.get(), kIdxsPerQuad, kQuadNumVertices,
                                     conicCount, kQuadsNumInIdxBuffer);
            mesh.setVertexData(vertexBuffer, firstVertex);
            target->draw(conicGP.get(), pipe.fPipeline, pipe.fFixedDynamicState, mesh);
        }
    }
}

bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
    GR_AUDIT_TRAIL_AUTO_FRAME(args.fRenderTargetContext->auditTrail(),
                              "GrAAHairlinePathRenderer::onDrawPath");
    SkASSERT(GrFSAAType::kUnifiedMSAA != args.fRenderTargetContext->fsaaType());

    SkIRect devClipBounds;
    args.fClip->getConservativeBounds(args.fRenderTargetContext->width(),
                                      args.fRenderTargetContext->height(),
                                      &devClipBounds);
    SkPath path;
    args.fShape->asPath(&path);
    std::unique_ptr<GrDrawOp> op =
            AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
                               args.fShape->style(), devClipBounds, args.fUserStencilSettings);
    args.fRenderTargetContext->addDrawOp(*args.fClip, std::move(op));
    return true;
}

///////////////////////////////////////////////////////////////////////////////////////////////////

#if GR_TEST_UTILS

GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
    SkMatrix viewMatrix = GrTest::TestMatrix(random);
    SkPath path = GrTest::TestPath(random);
    SkIRect devClipBounds;
    devClipBounds.setEmpty();
    return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
                              GrStyle::SimpleHairline(), devClipBounds,
                              GrGetRandomStencil(random, context));
}

#endif