1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
|
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAAConvexTessellator.h"
#include "SkCanvas.h"
#include "SkPath.h"
#include "SkPoint.h"
#include "SkString.h"
#include "GrPathUtils.h"
// Next steps:
// add an interactive sample app slide
// add debug check that all points are suitably far apart
// test more degenerate cases
// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
static const SkScalar kClose = (SK_Scalar1 / 16);
static const SkScalar kCloseSqd = kClose * kClose;
// tesselation tolerance values, in device space pixels
static const SkScalar kQuadTolerance = 0.2f;
static const SkScalar kCubicTolerance = 0.2f;
static const SkScalar kConicTolerance = 0.5f;
// dot product below which we use a round cap between curve segments
static const SkScalar kRoundCapThreshold = 0.8f;
// dot product above which we consider two adjacent curves to be part of the "same" curve
static const SkScalar kCurveConnectionThreshold = 0.8f;
static bool intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& n1,
SkScalar* t) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
if (SkScalarNearlyZero(perpDot)) {
return false;
}
*t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
SkASSERT(SkScalarIsFinite(*t));
return true;
}
// This is a special case version of intersect where we have the vector
// perpendicular to the second line rather than the vector parallel to it.
static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
const SkPoint& p1, const SkPoint& perp) {
const SkPoint v = p1 - p0;
SkScalar perpDot = n0.dot(perp);
return v.dot(perp) / perpDot;
}
static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
SkScalar distSq = p0.distanceToSqd(p1);
return distSq < kCloseSqd;
}
static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
SkPoint testV = test - p0;
SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
return SkScalarAbs(dist);
}
int GrAAConvexTessellator::addPt(const SkPoint& pt,
SkScalar depth,
SkScalar coverage,
bool movable,
CurveState curve) {
this->validate();
int index = fPts.count();
*fPts.push() = pt;
*fCoverages.push() = coverage;
*fMovable.push() = movable;
*fCurveState.push() = curve;
this->validate();
return index;
}
void GrAAConvexTessellator::popLastPt() {
this->validate();
fPts.pop();
fCoverages.pop();
fMovable.pop();
fCurveState.pop();
this->validate();
}
void GrAAConvexTessellator::popFirstPtShuffle() {
this->validate();
fPts.removeShuffle(0);
fCoverages.removeShuffle(0);
fMovable.removeShuffle(0);
fCurveState.removeShuffle(0);
this->validate();
}
void GrAAConvexTessellator::updatePt(int index,
const SkPoint& pt,
SkScalar depth,
SkScalar coverage) {
this->validate();
SkASSERT(fMovable[index]);
fPts[index] = pt;
fCoverages[index] = coverage;
}
void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
if (i0 == i1 || i1 == i2 || i2 == i0) {
return;
}
*fIndices.push() = i0;
*fIndices.push() = i1;
*fIndices.push() = i2;
}
void GrAAConvexTessellator::rewind() {
fPts.rewind();
fCoverages.rewind();
fMovable.rewind();
fIndices.rewind();
fNorms.rewind();
fCurveState.rewind();
fInitialRing.rewind();
fCandidateVerts.rewind();
#if GR_AA_CONVEX_TESSELLATOR_VIZ
fRings.rewind(); // TODO: leak in this case!
#else
fRings[0].rewind();
fRings[1].rewind();
#endif
}
void GrAAConvexTessellator::computeBisectors() {
fBisectors.setCount(fNorms.count());
int prev = fBisectors.count() - 1;
for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
fBisectors[cur] = fNorms[cur] + fNorms[prev];
if (!fBisectors[cur].normalize()) {
SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide);
fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide);
SkVector other;
other.setOrthog(fNorms[prev], fSide);
fBisectors[cur] += other;
SkAssertResult(fBisectors[cur].normalize());
} else {
fBisectors[cur].negate(); // make the bisector face in
}
if (fCurveState[prev] == kIndeterminate_CurveState) {
if (fCurveState[cur] == kSharp_CurveState) {
fCurveState[prev] = kSharp_CurveState;
} else {
if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
fCurveState[prev] = kCurve_CurveState;
fCurveState[cur] = kCurve_CurveState;
} else {
fCurveState[prev] = kSharp_CurveState;
fCurveState[cur] = kSharp_CurveState;
}
}
}
SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
}
}
// Create as many rings as we need to (up to a predefined limit) to reach the specified target
// depth. If we are in fill mode, the final ring will automatically be fanned.
bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
SkScalar initialCoverage, SkScalar targetDepth,
SkScalar targetCoverage, Ring** finalRing) {
static const int kMaxNumRings = 8;
if (previousRing.numPts() < 3) {
return false;
}
Ring* currentRing = &previousRing;
int i;
for (i = 0; i < kMaxNumRings; ++i) {
Ring* nextRing = this->getNextRing(currentRing);
SkASSERT(nextRing != currentRing);
bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
targetDepth, targetCoverage, i == 0);
currentRing = nextRing;
if (done) {
break;
}
currentRing->init(*this);
}
if (kMaxNumRings == i) {
// Bail if we've exceeded the amount of time we want to throw at this.
this->terminate(*currentRing);
return false;
}
bool done = currentRing->numPts() >= 3;
if (done) {
currentRing->init(*this);
}
*finalRing = currentRing;
return done;
}
// The general idea here is to, conceptually, start with the original polygon and slide
// the vertices along the bisectors until the first intersection. At that
// point two of the edges collapse and the process repeats on the new polygon.
// The polygon state is captured in the Ring class while the GrAAConvexTessellator
// controls the iteration. The CandidateVerts holds the formative points for the
// next ring.
bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
if (!this->extractFromPath(m, path)) {
return false;
}
SkScalar coverage = 1.0f;
SkScalar scaleFactor = 0.0f;
if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
SkASSERT(m.isSimilarity());
scaleFactor = m.getMaxScale(); // x and y scale are the same
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring outerStrokeAndAARing;
this->createOuterRing(fInitialRing,
effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
&outerStrokeAndAARing);
// discard all the triangles added between the originating ring and the new outer ring
fIndices.rewind();
outerStrokeAndAARing.init(*this);
outerStrokeAndAARing.makeOriginalRing();
// Add the outer stroke ring's normals to the originating ring's normals
// so it can also act as an originating ring
fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
}
// the bisectors are only needed for the computation of the outer ring
fBisectors.rewind();
Ring* insetAARing;
this->createInsetRings(outerStrokeAndAARing,
0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
&insetAARing);
SkDEBUGCODE(this->validate();)
return true;
}
if (SkStrokeRec::kStroke_Style == fStyle) {
SkASSERT(fStrokeWidth >= 0.0f);
SkASSERT(m.isSimilarity());
scaleFactor = m.getMaxScale(); // x and y scale are the same
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring outerStrokeRing;
this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
coverage, &outerStrokeRing);
outerStrokeRing.init(*this);
Ring outerAARing;
this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
} else {
Ring outerAARing;
this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
}
// the bisectors are only needed for the computation of the outer ring
fBisectors.rewind();
if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
SkASSERT(fStrokeWidth >= 0.0f);
SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
Ring* insetStrokeRing;
SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
&insetStrokeRing)) {
Ring* insetAARing;
this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
kAntialiasingRadius * 2, 0.0f, &insetAARing);
}
} else {
Ring* insetAARing;
this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
}
SkDEBUGCODE(this->validate();)
return true;
}
SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
SkASSERT(edgeIdx < fNorms.count());
SkPoint v = p - fPts[edgeIdx];
SkScalar depth = -fNorms[edgeIdx].dot(v);
return depth;
}
// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
// along the 'bisector' from the 'startIdx'-th point.
bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
const SkVector& bisector,
int edgeIdx,
SkScalar desiredDepth,
SkPoint* result) const {
const SkPoint& norm = fNorms[edgeIdx];
// First find the point where the edge and the bisector intersect
SkPoint newP;
SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
if (SkScalarNearlyEqual(t, 0.0f)) {
// the start point was one of the original ring points
SkASSERT(startIdx < fPts.count());
newP = fPts[startIdx];
} else if (t < 0.0f) {
newP = bisector;
newP.scale(t);
newP += fPts[startIdx];
} else {
return false;
}
// Then offset along the bisector from that point the correct distance
SkScalar dot = bisector.dot(norm);
t = -desiredDepth / dot;
*result = bisector;
result->scale(t);
*result += newP;
return true;
}
bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
// Outer ring: 3*numPts
// Middle ring: numPts
// Presumptive inner ring: numPts
this->reservePts(5*path.countPoints());
// Outer ring: 12*numPts
// Middle ring: 0
// Presumptive inner ring: 6*numPts + 6
fIndices.setReserve(18*path.countPoints() + 6);
fNorms.setReserve(path.countPoints());
// TODO: is there a faster way to extract the points from the path? Perhaps
// get all the points via a new entry point, transform them all in bulk
// and then walk them to find duplicates?
SkPath::Iter iter(path, true);
SkPoint pts[4];
SkPath::Verb verb;
while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
this->lineTo(m, pts[1], kSharp_CurveState);
break;
case SkPath::kQuad_Verb:
this->quadTo(m, pts);
break;
case SkPath::kCubic_Verb:
this->cubicTo(m, pts);
break;
case SkPath::kConic_Verb:
this->conicTo(m, pts, iter.conicWeight());
break;
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
case SkPath::kDone_Verb:
break;
}
}
if (this->numPts() < 2) {
return false;
}
// check if last point is a duplicate of the first point. If so, remove it.
if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
this->popLastPt();
fNorms.pop();
}
SkASSERT(fPts.count() == fNorms.count()+1);
if (this->numPts() >= 3) {
if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
// The last point is on the line from the second to last to the first point.
this->popLastPt();
fNorms.pop();
}
*fNorms.push() = fPts[0] - fPts.top();
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(fPts.count() == fNorms.count());
}
if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
// The first point is on the line from the last to the second.
this->popFirstPtShuffle();
fNorms.removeShuffle(0);
fNorms[0] = fPts[1] - fPts[0];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
}
if (this->numPts() >= 3) {
// Check the cross product of the final trio
SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
if (cross > 0.0f) {
fSide = SkPoint::kRight_Side;
} else {
fSide = SkPoint::kLeft_Side;
}
// Make all the normals face outwards rather than along the edge
for (int cur = 0; cur < fNorms.count(); ++cur) {
fNorms[cur].setOrthog(fNorms[cur], fSide);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
}
this->computeBisectors();
} else if (this->numPts() == 2) {
// We've got two points, so we're degenerate.
if (fStyle == SkStrokeRec::kFill_Style) {
// it's a fill, so we don't need to worry about degenerate paths
return false;
}
// For stroking, we still need to process the degenerate path, so fix it up
fSide = SkPoint::kLeft_Side;
// Make all the normals face outwards rather than along the edge
for (int cur = 0; cur < fNorms.count(); ++cur) {
fNorms[cur].setOrthog(fNorms[cur], fSide);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
}
fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
// we won't actually use the bisectors, so just push zeroes
fBisectors.push(SkPoint::Make(0.0, 0.0));
fBisectors.push(SkPoint::Make(0.0, 0.0));
} else {
return false;
}
fCandidateVerts.setReserve(this->numPts());
fInitialRing.setReserve(this->numPts());
for (int i = 0; i < this->numPts(); ++i) {
fInitialRing.addIdx(i, i);
}
fInitialRing.init(fNorms, fBisectors);
this->validate();
return true;
}
GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
#if GR_AA_CONVEX_TESSELLATOR_VIZ
Ring* ring = *fRings.push() = new Ring;
ring->setReserve(fInitialRing.numPts());
ring->rewind();
return ring;
#else
// Flip flop back and forth between fRings[0] & fRings[1]
int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
fRings[nextRing].setReserve(fInitialRing.numPts());
fRings[nextRing].rewind();
return &fRings[nextRing];
#endif
}
void GrAAConvexTessellator::fanRing(const Ring& ring) {
// fan out from point 0
int startIdx = ring.index(0);
for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
}
}
void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
SkScalar coverage, Ring* nextRing) {
const int numPts = previousRing.numPts();
if (numPts == 0) {
return;
}
int prev = numPts - 1;
int lastPerpIdx = -1, firstPerpIdx = -1;
const SkScalar outsetSq = outset * outset;
SkScalar miterLimitSq = outset * fMiterLimit;
miterLimitSq = miterLimitSq * miterLimitSq;
for (int cur = 0; cur < numPts; ++cur) {
int originalIdx = previousRing.index(cur);
// For each vertex of the original polygon we add at least two points to the
// outset polygon - one extending perpendicular to each impinging edge. Connecting these
// two points yields a bevel join. We need one additional point for a mitered join, and
// a round join requires one or more points depending upon curvature.
// The perpendicular point for the last edge
SkPoint normal1 = previousRing.norm(prev);
SkPoint perp1 = normal1;
perp1.scale(outset);
perp1 += this->point(originalIdx);
// The perpendicular point for the next edge.
SkPoint normal2 = previousRing.norm(cur);
SkPoint perp2 = normal2;
perp2.scale(outset);
perp2 += fPts[originalIdx];
CurveState curve = fCurveState[originalIdx];
// We know it isn't a duplicate of the prior point (since it and this
// one are just perpendicular offsets from the non-merged polygon points)
int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
nextRing->addIdx(perp1Idx, originalIdx);
int perp2Idx;
// For very shallow angles all the corner points could fuse.
if (duplicate_pt(perp2, this->point(perp1Idx))) {
perp2Idx = perp1Idx;
} else {
perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
}
if (perp2Idx != perp1Idx) {
if (curve == kCurve_CurveState) {
// bevel or round depending upon curvature
SkScalar dotProd = normal1.dot(normal2);
if (dotProd < kRoundCapThreshold) {
// Currently we "round" by creating a single extra point, which produces
// good results for common cases. For thick strokes with high curvature, we will
// need to add more points; for the time being we simply fall back to software
// rendering for thick strokes.
SkPoint miter = previousRing.bisector(cur);
miter.setLength(-outset);
miter += fPts[originalIdx];
// For very shallow angles all the corner points could fuse
if (!duplicate_pt(miter, this->point(perp1Idx))) {
int miterIdx;
miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
nextRing->addIdx(miterIdx, originalIdx);
// The two triangles for the corner
this->addTri(originalIdx, perp1Idx, miterIdx);
this->addTri(originalIdx, miterIdx, perp2Idx);
}
} else {
this->addTri(originalIdx, perp1Idx, perp2Idx);
}
} else {
switch (fJoin) {
case SkPaint::Join::kMiter_Join: {
// The bisector outset point
SkPoint miter = previousRing.bisector(cur);
SkScalar dotProd = normal1.dot(normal2);
SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
SkScalar lengthSq = outsetSq / sinHalfAngleSq;
if (lengthSq > miterLimitSq) {
// just bevel it
this->addTri(originalIdx, perp1Idx, perp2Idx);
break;
}
miter.setLength(-SkScalarSqrt(lengthSq));
miter += fPts[originalIdx];
// For very shallow angles all the corner points could fuse
if (!duplicate_pt(miter, this->point(perp1Idx))) {
int miterIdx;
miterIdx = this->addPt(miter, -outset, coverage, false,
kSharp_CurveState);
nextRing->addIdx(miterIdx, originalIdx);
// The two triangles for the corner
this->addTri(originalIdx, perp1Idx, miterIdx);
this->addTri(originalIdx, miterIdx, perp2Idx);
}
break;
}
case SkPaint::Join::kBevel_Join:
this->addTri(originalIdx, perp1Idx, perp2Idx);
break;
default:
// kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
// only willing to draw mitered or beveled, so we should never get here.
SkASSERT(false);
}
}
nextRing->addIdx(perp2Idx, originalIdx);
}
if (0 == cur) {
// Store the index of the first perpendicular point to finish up
firstPerpIdx = perp1Idx;
SkASSERT(-1 == lastPerpIdx);
} else {
// The triangles for the previous edge
int prevIdx = previousRing.index(prev);
this->addTri(prevIdx, perp1Idx, originalIdx);
this->addTri(prevIdx, lastPerpIdx, perp1Idx);
}
// Track the last perpendicular outset point so we can construct the
// trailing edge triangles.
lastPerpIdx = perp2Idx;
prev = cur;
}
// pick up the final edge rect
int lastIdx = previousRing.index(numPts - 1);
this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
this->validate();
}
// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
// and fan it.
void GrAAConvexTessellator::terminate(const Ring& ring) {
if (fStyle != SkStrokeRec::kStroke_Style) {
this->fanRing(ring);
}
}
static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
SkScalar targetDepth, SkScalar targetCoverage) {
if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
return targetCoverage;
}
SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
(targetCoverage - initialCoverage) + initialCoverage;
return SkScalarClampMax(result, 1.0f);
}
// return true when processing is complete
bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
SkScalar initialDepth, SkScalar initialCoverage,
SkScalar targetDepth, SkScalar targetCoverage,
bool forceNew) {
bool done = false;
fCandidateVerts.rewind();
// Loop through all the points in the ring and find the intersection with the smallest depth
SkScalar minDist = SK_ScalarMax, minT = 0.0f;
int minEdgeIdx = -1;
for (int cur = 0; cur < lastRing.numPts(); ++cur) {
int next = (cur + 1) % lastRing.numPts();
SkScalar t;
bool result = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
this->point(lastRing.index(next)), lastRing.bisector(next),
&t);
if (!result) {
continue;
}
SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
if (minDist > dist) {
minDist = dist;
minT = t;
minEdgeIdx = cur;
}
}
if (minEdgeIdx == -1) {
return false;
}
SkPoint newPt = lastRing.bisector(minEdgeIdx);
newPt.scale(minT);
newPt += this->point(lastRing.index(minEdgeIdx));
SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
if (depth >= targetDepth) {
// None of the bisectors intersect before reaching the desired depth.
// Just step them all to the desired depth
depth = targetDepth;
done = true;
}
// 'dst' stores where each point in the last ring maps to/transforms into
// in the next ring.
SkTDArray<int> dst;
dst.setCount(lastRing.numPts());
// Create the first point (who compares with no one)
if (!this->computePtAlongBisector(lastRing.index(0),
lastRing.bisector(0),
lastRing.origEdgeID(0),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
dst[0] = fCandidateVerts.addNewPt(newPt,
lastRing.index(0), lastRing.origEdgeID(0),
!this->movable(lastRing.index(0)));
// Handle the middle points (who only compare with the prior point)
for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
}
}
// Check on the last point (handling the wrap around)
int cur = lastRing.numPts()-1;
if (!this->computePtAlongBisector(lastRing.index(cur),
lastRing.bisector(cur),
lastRing.origEdgeID(cur),
depth, &newPt)) {
this->terminate(lastRing);
return true;
}
bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
if (!dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.addNewPt(newPt,
lastRing.index(cur), lastRing.origEdgeID(cur),
!this->movable(lastRing.index(cur)));
} else if (dupPrev && !dupNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else if (!dupPrev && dupNext) {
dst[cur] = fCandidateVerts.fuseWithNext();
} else {
bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
if (!dupPrevVsNext) {
dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
} else {
const int fused = fCandidateVerts.fuseWithBoth();
dst[cur] = fused;
const int targetIdx = dst[cur - 1];
for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
dst[i] = fused;
}
}
}
// Fold the new ring's points into the global pool
for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
int newIdx;
if (fCandidateVerts.needsToBeNew(i) || forceNew) {
// if the originating index is still valid then this point wasn't
// fused (and is thus movable)
SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
targetDepth, targetCoverage);
newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
} else {
SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
targetCoverage);
newIdx = fCandidateVerts.originatingIdx(i);
}
nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
}
// 'dst' currently has indices into the ring. Remap these to be indices
// into the global pool since the triangulation operates in that space.
for (int i = 0; i < dst.count(); ++i) {
dst[i] = nextRing->index(dst[i]);
}
for (int i = 0; i < lastRing.numPts(); ++i) {
int next = (i + 1) % lastRing.numPts();
this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
this->addTri(lastRing.index(i), dst[next], dst[i]);
}
if (done && fStyle != SkStrokeRec::kStroke_Style) {
// fill or stroke-and-fill
this->fanRing(*nextRing);
}
if (nextRing->numPts() < 3) {
done = true;
}
return done;
}
void GrAAConvexTessellator::validate() const {
SkASSERT(fPts.count() == fMovable.count());
SkASSERT(fPts.count() == fCoverages.count());
SkASSERT(fPts.count() == fCurveState.count());
SkASSERT(0 == (fIndices.count() % 3));
SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
}
//////////////////////////////////////////////////////////////////////////////
void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
this->computeNormals(tess);
this->computeBisectors(tess);
}
void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
const SkTDArray<SkVector>& bisectors) {
for (int i = 0; i < fPts.count(); ++i) {
fPts[i].fNorm = norms[i];
fPts[i].fBisector = bisectors[i];
}
}
// Compute the outward facing normal at each vertex.
void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
for (int cur = 0; cur < fPts.count(); ++cur) {
int next = (cur + 1) % fPts.count();
fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
SkPoint::Normalize(&fPts[cur].fNorm);
fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
}
}
void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
int prev = fPts.count() - 1;
for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
if (!fPts[cur].fBisector.normalize()) {
SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side());
fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side());
SkVector other;
other.setOrthog(fPts[prev].fNorm, tess.side());
fPts[cur].fBisector += other;
SkAssertResult(fPts[cur].fBisector.normalize());
} else {
fPts[cur].fBisector.negate(); // make the bisector face in
}
}
}
//////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
// Is this ring convex?
bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
if (fPts.count() < 3) {
return true;
}
SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
SkScalar maxDot = minDot;
prev = cur;
for (int i = 1; i < fPts.count(); ++i) {
int next = (i + 1) % fPts.count();
cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
minDot = SkMinScalar(minDot, dot);
maxDot = SkMaxScalar(maxDot, dot);
prev = cur;
}
if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
maxDot = 0;
}
if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
minDot = 0;
}
return (maxDot >= 0.0f) == (minDot >= 0.0f);
}
#endif
void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
return;
}
SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
if (this->numPts() >= 2 && abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
// The old last point is on the line from the second to last to the new point
this->popLastPt();
fNorms.pop();
// double-check that the new last point is not a duplicate of the new point. In an ideal
// world this wouldn't be necessary (since it's only possible for non-convex paths), but
// floating point precision issues mean it can actually happen on paths that were
// determined to be convex.
if (duplicate_pt(p, this->lastPoint())) {
return;
}
}
SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
this->addPt(p, 0.0f, initialRingCoverage, false, curve);
if (this->numPts() > 1) {
*fNorms.push() = fPts.top() - fPts[fPts.count()-2];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
}
}
void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curve) {
m.mapPoints(&p, 1);
this->lineTo(p, curve);
}
void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
kQuadTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count - 1; i++) {
this->lineTo(fPointBuffer[i], kCurve_CurveState);
}
this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
}
void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
m.mapPoints(pts, 3);
this->quadTo(pts);
}
void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
m.mapPoints(pts, 4);
int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
kCubicTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count - 1; i++) {
this->lineTo(fPointBuffer[i], kCurve_CurveState);
}
this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
}
// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
#include "SkGeometry.h"
void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
m.mapPoints(pts, 3);
SkAutoConicToQuads quadder;
const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
SkPoint lastPoint = *(quads++);
int count = quadder.countQuads();
for (int i = 0; i < count; ++i) {
SkPoint quadPts[3];
quadPts[0] = lastPoint;
quadPts[1] = quads[0];
quadPts[2] = i == count - 1 ? pts[2] : quads[1];
this->quadTo(quadPts);
lastPoint = quadPts[2];
quads += 2;
}
}
//////////////////////////////////////////////////////////////////////////////
#if GR_AA_CONVEX_TESSELLATOR_VIZ
static const SkScalar kPointRadius = 0.02f;
static const SkScalar kArrowStrokeWidth = 0.0f;
static const SkScalar kArrowLength = 0.2f;
static const SkScalar kEdgeTextSize = 0.1f;
static const SkScalar kPointTextSize = 0.02f;
static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
SkPaint paint;
SkASSERT(paramValue <= 1.0f);
int gs = int(255*paramValue);
paint.setARGB(255, gs, gs, gs);
canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
if (stroke) {
SkPaint stroke;
stroke.setColor(SK_ColorYELLOW);
stroke.setStyle(SkPaint::kStroke_Style);
stroke.setStrokeWidth(kPointRadius/3.0f);
canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
}
}
static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
SkPaint p;
p.setColor(color);
canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
}
static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
SkScalar len, SkColor color) {
SkPaint paint;
paint.setColor(color);
paint.setStrokeWidth(kArrowStrokeWidth);
paint.setStyle(SkPaint::kStroke_Style);
canvas->drawLine(p.fX, p.fY,
p.fX + len * n.fX, p.fY + len * n.fY,
paint);
}
void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
SkPaint paint;
paint.setTextSize(kEdgeTextSize);
for (int cur = 0; cur < fPts.count(); ++cur) {
int next = (cur + 1) % fPts.count();
draw_line(canvas,
tess.point(fPts[cur].fIndex),
tess.point(fPts[next].fIndex),
SK_ColorGREEN);
SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
mid.scale(0.5f);
if (fPts.count()) {
draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
}
SkString num;
num.printf("%d", this->origEdgeID(cur));
canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
if (fPts.count()) {
draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
kArrowLength, SK_ColorBLUE);
}
}
}
void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
for (int i = 0; i < fIndices.count(); i += 3) {
SkASSERT(fIndices[i] < this->numPts()) ;
SkASSERT(fIndices[i+1] < this->numPts()) ;
SkASSERT(fIndices[i+2] < this->numPts()) ;
draw_line(canvas,
this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
SK_ColorBLACK);
draw_line(canvas,
this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
SK_ColorBLACK);
}
fInitialRing.draw(canvas, *this);
for (int i = 0; i < fRings.count(); ++i) {
fRings[i]->draw(canvas, *this);
}
for (int i = 0; i < this->numPts(); ++i) {
draw_point(canvas,
this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
!this->movable(i));
SkPaint paint;
paint.setTextSize(kPointTextSize);
paint.setTextAlign(SkPaint::kCenter_Align);
if (this->depth(i) <= -kAntialiasingRadius) {
paint.setColor(SK_ColorWHITE);
}
SkString num;
num.printf("%d", i);
canvas->drawText(num.c_str(), num.size(),
this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
paint);
}
}
#endif
|