aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/glsl/GrGLSLFragmentShaderBuilder.cpp
blob: a52b1a638691340757bb1c6c5e4a925f439ef99e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "GrGLSLFragmentShaderBuilder.h"
#include "GrRenderTarget.h"
#include "GrRenderTargetPriv.h"
#include "gl/GrGLGpu.h"
#include "glsl/GrGLSL.h"
#include "glsl/GrGLSLCaps.h"
#include "glsl/GrGLSLProgramBuilder.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "glsl/GrGLSLVarying.h"

const char* GrGLSLFragmentShaderBuilder::kDstTextureColorName = "_dstColor";

static const char* sample_offset_array_name(GrGLSLFPFragmentBuilder::Coordinates coords) {
    static const char* kArrayNames[] = {
        "deviceSpaceSampleOffsets",
        "windowSpaceSampleOffsets"
    };
    return kArrayNames[coords];

    GR_STATIC_ASSERT(0 == GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates);
    GR_STATIC_ASSERT(1 == GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kArrayNames) == GrGLSLFPFragmentBuilder::kLast_Coordinates + 1);
}

static const char* specific_layout_qualifier_name(GrBlendEquation equation) {
    SkASSERT(GrBlendEquationIsAdvanced(equation));

    static const char* kLayoutQualifierNames[] = {
        "blend_support_screen",
        "blend_support_overlay",
        "blend_support_darken",
        "blend_support_lighten",
        "blend_support_colordodge",
        "blend_support_colorburn",
        "blend_support_hardlight",
        "blend_support_softlight",
        "blend_support_difference",
        "blend_support_exclusion",
        "blend_support_multiply",
        "blend_support_hsl_hue",
        "blend_support_hsl_saturation",
        "blend_support_hsl_color",
        "blend_support_hsl_luminosity"
    };
    return kLayoutQualifierNames[equation - kFirstAdvancedGrBlendEquation];

    GR_STATIC_ASSERT(0 == kScreen_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(1 == kOverlay_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(2 == kDarken_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(3 == kLighten_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(4 == kColorDodge_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(5 == kColorBurn_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(6 == kHardLight_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(7 == kSoftLight_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(8 == kDifference_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(9 == kExclusion_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(10 == kMultiply_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(11 == kHSLHue_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(12 == kHSLSaturation_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(13 == kHSLColor_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(14 == kHSLLuminosity_GrBlendEquation - kFirstAdvancedGrBlendEquation);
    GR_STATIC_ASSERT(SK_ARRAY_COUNT(kLayoutQualifierNames) ==
                     kGrBlendEquationCnt - kFirstAdvancedGrBlendEquation);
}

uint8_t GrGLSLFragmentShaderBuilder::KeyForSurfaceOrigin(GrSurfaceOrigin origin) {
    SkASSERT(kTopLeft_GrSurfaceOrigin == origin || kBottomLeft_GrSurfaceOrigin == origin);
    return origin;

    GR_STATIC_ASSERT(1 == kTopLeft_GrSurfaceOrigin);
    GR_STATIC_ASSERT(2 == kBottomLeft_GrSurfaceOrigin);
}

GrGLSLFragmentShaderBuilder::GrGLSLFragmentShaderBuilder(GrGLSLProgramBuilder* program)
    : GrGLSLFragmentBuilder(program)
    , fSetupFragPosition(false)
    , fHasCustomColorOutput(false)
    , fCustomColorOutputIndex(-1)
    , fHasSecondaryOutput(false)
    , fUsedSampleOffsetArrays(0)
    , fHasInitializedSampleMask(false) {
    fSubstageIndices.push_back(0);
#ifdef SK_DEBUG
    fUsedProcessorFeatures = GrProcessor::kNone_RequiredFeatures;
    fHasReadDstColor = false;
#endif
}

bool GrGLSLFragmentShaderBuilder::enableFeature(GLSLFeature feature) {
    const GrGLSLCaps& glslCaps = *fProgramBuilder->glslCaps();
    switch (feature) {
        case kStandardDerivatives_GLSLFeature:
            if (!glslCaps.shaderDerivativeSupport()) {
                return false;
            }
            if (const char* extension = glslCaps.shaderDerivativeExtensionString()) {
                this->addFeature(1 << kStandardDerivatives_GLSLFeature, extension);
            }
            return true;
        case kPixelLocalStorage_GLSLFeature:
            if (glslCaps.pixelLocalStorageSize() <= 0) {
                return false;
            }
            this->addFeature(1 << kPixelLocalStorage_GLSLFeature,
                             "GL_EXT_shader_pixel_local_storage");
            return true;
        case kMultisampleInterpolation_GLSLFeature:
            if (!glslCaps.multisampleInterpolationSupport()) {
                return false;
            }
            if (const char* extension = glslCaps.multisampleInterpolationExtensionString()) {
                this->addFeature(1 << kMultisampleInterpolation_GLSLFeature, extension);
            }
            return true;
        default:
            SkFAIL("Unexpected GLSLFeature requested.");
            return false;
    }
}

SkString GrGLSLFragmentShaderBuilder::ensureFSCoords2D(const GrGLSLTransformedCoordsArray& coords,
                                                       int index) {
    if (kVec3f_GrSLType != coords[index].getType()) {
        SkASSERT(kVec2f_GrSLType == coords[index].getType());
        return coords[index].getName();
    }

    SkString coords2D("coords2D");
    if (0 != index) {
        coords2D.appendf("_%i", index);
    }
    this->codeAppendf("\tvec2 %s = %s.xy / %s.z;",
                      coords2D.c_str(), coords[index].c_str(), coords[index].c_str());
    return coords2D;
}

const char* GrGLSLFragmentShaderBuilder::fragmentPosition() {
    SkDEBUGCODE(fUsedProcessorFeatures |= GrProcessor::kFragmentPosition_RequiredFeature;)

    const GrGLSLCaps* glslCaps = fProgramBuilder->glslCaps();
    // We only declare "gl_FragCoord" when we're in the case where we want to use layout qualifiers
    // to reverse y. Otherwise it isn't necessary and whether the "in" qualifier appears in the
    // declaration varies in earlier GLSL specs. So it is simpler to omit it.
    if (kTopLeft_GrSurfaceOrigin == this->getSurfaceOrigin()) {
        fSetupFragPosition = true;
        return "gl_FragCoord";
    } else if (const char* extension = glslCaps->fragCoordConventionsExtensionString()) {
        if (!fSetupFragPosition) {
            if (glslCaps->generation() < k150_GrGLSLGeneration) {
                this->addFeature(1 << kFragCoordConventions_GLSLPrivateFeature,
                                 extension);
            }
            fInputs.push_back().set(kVec4f_GrSLType,
                                    GrGLSLShaderVar::kIn_TypeModifier,
                                    "gl_FragCoord",
                                    kDefault_GrSLPrecision,
                                    "origin_upper_left");
            fSetupFragPosition = true;
        }
        return "gl_FragCoord";
    } else {
        static const char* kTempName = "tmpXYFragCoord";
        static const char* kCoordName = "fragCoordYDown";
        if (!fSetupFragPosition) {
            const char* rtHeightName;

            fProgramBuilder->addRTHeightUniform("RTHeight", &rtHeightName);

            // The Adreno compiler seems to be very touchy about access to "gl_FragCoord".
            // Accessing glFragCoord.zw can cause a program to fail to link. Additionally,
            // depending on the surrounding code, accessing .xy with a uniform involved can
            // do the same thing. Copying gl_FragCoord.xy into a temp vec2 beforehand
            // (and only accessing .xy) seems to "fix" things.
            const char* precision = glslCaps->usesPrecisionModifiers() ? "highp " : "";
            this->codePrependf("\t%svec4 %s = vec4(%s.x, %s - %s.y, 1.0, 1.0);\n",
                               precision, kCoordName, kTempName, rtHeightName, kTempName);
            this->codePrependf("%svec2 %s = gl_FragCoord.xy;", precision, kTempName);
            fSetupFragPosition = true;
        }
        SkASSERT(fProgramBuilder->fUniformHandles.fRTHeightUni.isValid());
        return kCoordName;
    }
}

void GrGLSLFragmentShaderBuilder::appendOffsetToSample(const char* sampleIdx, Coordinates coords) {
    SkASSERT(fProgramBuilder->header().fSamplePatternKey);
    SkDEBUGCODE(fUsedProcessorFeatures |= GrProcessor::kSampleLocations_RequiredFeature);
    if (kTopLeft_GrSurfaceOrigin == this->getSurfaceOrigin()) {
        // With a top left origin, device and window space are equal, so we only use device coords.
        coords = kSkiaDevice_Coordinates;
    }
    this->codeAppendf("%s[%s]", sample_offset_array_name(coords), sampleIdx);
    fUsedSampleOffsetArrays |= (1 << coords);
}

void GrGLSLFragmentShaderBuilder::maskSampleCoverage(const char* mask, bool invert) {
    const GrGLSLCaps& glslCaps = *fProgramBuilder->glslCaps();
    if (!glslCaps.sampleVariablesSupport()) {
        SkDEBUGFAIL("Attempted to mask sample coverage without support.");
        return;
    }
    if (const char* extension = glslCaps.sampleVariablesExtensionString()) {
        this->addFeature(1 << kSampleVariables_GLSLPrivateFeature, extension);
    }
    if (!fHasInitializedSampleMask) {
        this->codePrependf("gl_SampleMask[0] = -1;");
        fHasInitializedSampleMask = true;
    }
    if (invert) {
        this->codeAppendf("gl_SampleMask[0] &= ~(%s);", mask);
    } else {
        this->codeAppendf("gl_SampleMask[0] &= %s;", mask);
    }
}

void GrGLSLFragmentShaderBuilder::overrideSampleCoverage(const char* mask) {
    const GrGLSLCaps& glslCaps = *fProgramBuilder->glslCaps();
    if (!glslCaps.sampleMaskOverrideCoverageSupport()) {
        SkDEBUGFAIL("Attempted to override sample coverage without support.");
        return;
    }
    SkASSERT(glslCaps.sampleVariablesSupport());
    if (const char* extension = glslCaps.sampleVariablesExtensionString()) {
        this->addFeature(1 << kSampleVariables_GLSLPrivateFeature, extension);
    }
    if (this->addFeature(1 << kSampleMaskOverrideCoverage_GLSLPrivateFeature,
                         "GL_NV_sample_mask_override_coverage")) {
        // Redeclare gl_SampleMask with layout(override_coverage) if we haven't already.
        fOutputs.push_back().set(kInt_GrSLType, GrShaderVar::kOut_TypeModifier,
                                 "gl_SampleMask", 1, kHigh_GrSLPrecision,
                                 "override_coverage");
    }
    this->codeAppendf("gl_SampleMask[0] = %s;", mask);
    fHasInitializedSampleMask = true;
}

const char* GrGLSLFragmentShaderBuilder::dstColor() {
    SkDEBUGCODE(fHasReadDstColor = true;)

    const char* override = fProgramBuilder->primitiveProcessor().getDestColorOverride();
    if (override != nullptr) {
        return override;
    }

    const GrGLSLCaps* glslCaps = fProgramBuilder->glslCaps();
    if (glslCaps->fbFetchSupport()) {
        this->addFeature(1 << kFramebufferFetch_GLSLPrivateFeature,
                         glslCaps->fbFetchExtensionString());

        // Some versions of this extension string require declaring custom color output on ES 3.0+
        const char* fbFetchColorName = glslCaps->fbFetchColorName();
        if (glslCaps->fbFetchNeedsCustomOutput()) {
            this->enableCustomOutput();
            fOutputs[fCustomColorOutputIndex].setTypeModifier(GrShaderVar::kInOut_TypeModifier);
            fbFetchColorName = DeclaredColorOutputName();
        }
        return fbFetchColorName;
    } else {
        return kDstTextureColorName;
    }
}

void GrGLSLFragmentShaderBuilder::enableAdvancedBlendEquationIfNeeded(GrBlendEquation equation) {
    SkASSERT(GrBlendEquationIsAdvanced(equation));

    const GrGLSLCaps& caps = *fProgramBuilder->glslCaps();
    if (!caps.mustEnableAdvBlendEqs()) {
        return;
    }

    this->addFeature(1 << kBlendEquationAdvanced_GLSLPrivateFeature,
                     "GL_KHR_blend_equation_advanced");
    if (caps.mustEnableSpecificAdvBlendEqs()) {
        this->addLayoutQualifier(specific_layout_qualifier_name(equation), kOut_InterfaceQualifier);
    } else {
        this->addLayoutQualifier("blend_support_all_equations", kOut_InterfaceQualifier);
    }
}

void GrGLSLFragmentShaderBuilder::enableCustomOutput() {
    if (!fHasCustomColorOutput) {
        fHasCustomColorOutput = true;
        fCustomColorOutputIndex = fOutputs.count();
        fOutputs.push_back().set(kVec4f_GrSLType,
                                 GrGLSLShaderVar::kOut_TypeModifier,
                                 DeclaredColorOutputName());
        fProgramBuilder->finalizeFragmentOutputColor(fOutputs.back());
    }
}

void GrGLSLFragmentShaderBuilder::enableSecondaryOutput() {
    SkASSERT(!fHasSecondaryOutput);
    fHasSecondaryOutput = true;
    const GrGLSLCaps& caps = *fProgramBuilder->glslCaps();
    if (const char* extension = caps.secondaryOutputExtensionString()) {
        this->addFeature(1 << kBlendFuncExtended_GLSLPrivateFeature, extension);
    }

    // If the primary output is declared, we must declare also the secondary output
    // and vice versa, since it is not allowed to use a built-in gl_FragColor and a custom
    // output. The condition also co-incides with the condition in whici GLES SL 2.0
    // requires the built-in gl_SecondaryFragColorEXT, where as 3.0 requires a custom output.
    if (caps.mustDeclareFragmentShaderOutput()) {
        fOutputs.push_back().set(kVec4f_GrSLType, GrGLSLShaderVar::kOut_TypeModifier,
                                 DeclaredSecondaryColorOutputName());
        fProgramBuilder->finalizeFragmentSecondaryColor(fOutputs.back());
    }
}

const char* GrGLSLFragmentShaderBuilder::getPrimaryColorOutputName() const {
    return fHasCustomColorOutput ? DeclaredColorOutputName() : "gl_FragColor";
}

void GrGLSLFragmentBuilder::declAppendf(const char* fmt, ...) {
    va_list argp;
    va_start(argp, fmt);
    inputs().appendVAList(fmt, argp);
    va_end(argp);
}

const char* GrGLSLFragmentShaderBuilder::getSecondaryColorOutputName() const {
    const GrGLSLCaps& caps = *fProgramBuilder->glslCaps();
    return caps.mustDeclareFragmentShaderOutput() ? DeclaredSecondaryColorOutputName()
                                                  : "gl_SecondaryFragColorEXT";
}

GrSurfaceOrigin GrGLSLFragmentShaderBuilder::getSurfaceOrigin() const {
    SkASSERT(fProgramBuilder->header().fSurfaceOriginKey);
    return static_cast<GrSurfaceOrigin>(fProgramBuilder->header().fSurfaceOriginKey);

    GR_STATIC_ASSERT(1 == kTopLeft_GrSurfaceOrigin);
    GR_STATIC_ASSERT(2 == kBottomLeft_GrSurfaceOrigin);
}

void GrGLSLFragmentShaderBuilder::onFinalize() {
    fProgramBuilder->varyingHandler()->getFragDecls(&this->inputs(), &this->outputs());
    GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision,
                                                 *fProgramBuilder->glslCaps(),
                                                 &this->precisionQualifier());
    if (fUsedSampleOffsetArrays & (1 << kSkiaDevice_Coordinates)) {
        this->defineSampleOffsetArray(sample_offset_array_name(kSkiaDevice_Coordinates),
                                      SkMatrix::MakeTrans(-0.5f, -0.5f));
    }
    if (fUsedSampleOffsetArrays & (1 << kGLSLWindow_Coordinates)) {
        // With a top left origin, device and window space are equal, so we only use device coords.
        SkASSERT(kBottomLeft_GrSurfaceOrigin == this->getSurfaceOrigin());
        SkMatrix m;
        m.setScale(1, -1);
        m.preTranslate(-0.5f, -0.5f);
        this->defineSampleOffsetArray(sample_offset_array_name(kGLSLWindow_Coordinates), m);
    }
}

void GrGLSLFragmentShaderBuilder::defineSampleOffsetArray(const char* name, const SkMatrix& m) {
    SkASSERT(fProgramBuilder->caps()->sampleLocationsSupport());
    const GrPipeline& pipeline = fProgramBuilder->pipeline();
    const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv();
    const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline.getStencil());
    SkSTArray<16, SkPoint, true> offsets;
    offsets.push_back_n(specs.fEffectiveSampleCnt);
    m.mapPoints(offsets.begin(), specs.fSampleLocations.get(), specs.fEffectiveSampleCnt);
    this->definitions().append("const ");
    if (fProgramBuilder->glslCaps()->usesPrecisionModifiers()) {
        this->definitions().append("highp ");
    }
    this->definitions().appendf("vec2 %s[] = vec2[](", name);
    for (int i = 0; i < specs.fEffectiveSampleCnt; ++i) {
        this->definitions().appendf("vec2(%f, %f)", offsets[i].x(), offsets[i].y());
        this->definitions().append(i + 1 != specs.fEffectiveSampleCnt ? ", " : ");\n");
    }
}

void GrGLSLFragmentShaderBuilder::onBeforeChildProcEmitCode() {
    SkASSERT(fSubstageIndices.count() >= 1);
    fSubstageIndices.push_back(0);
    // second-to-last value in the fSubstageIndices stack is the index of the child proc
    // at that level which is currently emitting code.
    fMangleString.appendf("_c%d", fSubstageIndices[fSubstageIndices.count() - 2]);
}

void GrGLSLFragmentShaderBuilder::onAfterChildProcEmitCode() {
    SkASSERT(fSubstageIndices.count() >= 2);
    fSubstageIndices.pop_back();
    fSubstageIndices.back()++;
    int removeAt = fMangleString.findLastOf('_');
    fMangleString.remove(removeAt, fMangleString.size() - removeAt);
}