1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGLSLFragmentProcessor_DEFINED
#define GrGLSLFragmentProcessor_DEFINED
#include "GrFragmentProcessor.h"
#include "GrShaderVar.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
class GrProcessor;
class GrProcessorKeyBuilder;
class GrGLSLFPBuilder;
class GrGLSLFPFragmentBuilder;
class GrGLSLFragmentProcessor {
public:
GrGLSLFragmentProcessor() {}
virtual ~GrGLSLFragmentProcessor() {
for (int i = 0; i < fChildProcessors.count(); ++i) {
delete fChildProcessors[i];
}
}
using UniformHandle = GrGLSLUniformHandler::UniformHandle;
using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
using TexelBufferHandle = GrGLSLUniformHandler::TexelBufferHandle;
private:
/**
* This class allows the shader builder to provide each GrGLSLFragmentProcesor with an array of
* generated variables where each generated variable corresponds to an element of an array on
* the GrFragmentProcessor that generated the GLSLFP. For example, this is used to provide a
* variable holding transformed coords for each GrCoordTransform owned by the FP.
*/
template <typename T, typename FPBASE, int (FPBASE::*COUNT)() const>
class BuilderInputProvider {
public:
BuilderInputProvider(const GrFragmentProcessor* fp, const T* ts) : fFP(fp) , fTs(ts) {}
const T& operator[] (int i) const {
SkASSERT(i >= 0 && i < (fFP->*COUNT)());
return fTs[i];
}
BuilderInputProvider childInputs(int childIdx) const {
const GrFragmentProcessor* child = &fFP->childProcessor(childIdx);
GrFragmentProcessor::Iter iter(fFP);
int numToSkip = 0;
while (true) {
const GrFragmentProcessor* fp = iter.next();
if (fp == child) {
return BuilderInputProvider(child, fTs + numToSkip);
}
numToSkip += (fp->*COUNT)();
}
}
private:
const GrFragmentProcessor* fFP;
const T* fTs;
};
public:
using TransformedCoordVars = BuilderInputProvider<GrShaderVar, GrFragmentProcessor,
&GrFragmentProcessor::numCoordTransforms>;
using TextureSamplers = BuilderInputProvider<SamplerHandle, GrResourceIOProcessor,
&GrResourceIOProcessor::numTextureSamplers>;
using TexelBuffers = BuilderInputProvider<TexelBufferHandle, GrResourceIOProcessor,
&GrResourceIOProcessor::numBuffers>;
/** Called when the program stage should insert its code into the shaders. The code in each
shader will be in its own block ({}) and so locally scoped names will not collide across
stages.
@param fragBuilder Interface used to emit code in the shaders.
@param fp The processor that generated this program stage.
@param key The key that was computed by GenKey() from the generating
GrProcessor.
@param outputColor A predefined half4 in the FS in which the stage should place its
output color (or coverage).
@param inputColor A half4 that holds the input color to the stage in the FS. This may
be nullptr in which case the implied input is solid white (all
ones). TODO: Better system for communicating optimization info
(e.g. input color is solid white, trans black, known to be opaque,
etc.) that allows the processor to communicate back similar known
info about its output.
@param transformedCoords Fragment shader variables containing the coords computed using
each of the GrFragmentProcessor's GrCoordTransforms.
@param texSamplers Contains one entry for each TextureSampler of the GrProcessor.
These can be passed to the builder to emit texture reads in the
generated code.
@param bufferSamplers Contains one entry for each BufferAccess of the GrProcessor. These
can be passed to the builder to emit buffer reads in the generated
code.
*/
struct EmitArgs {
EmitArgs(GrGLSLFPFragmentBuilder* fragBuilder,
GrGLSLUniformHandler* uniformHandler,
const GrShaderCaps* caps,
const GrFragmentProcessor& fp,
const char* outputColor,
const char* inputColor,
const TransformedCoordVars& transformedCoordVars,
const TextureSamplers& textureSamplers,
const TexelBuffers& texelBuffers)
: fFragBuilder(fragBuilder)
, fUniformHandler(uniformHandler)
, fShaderCaps(caps)
, fFp(fp)
, fOutputColor(outputColor)
, fInputColor(inputColor)
, fTransformedCoords(transformedCoordVars)
, fTexSamplers(textureSamplers)
, fTexelBuffers(texelBuffers) {}
GrGLSLFPFragmentBuilder* fFragBuilder;
GrGLSLUniformHandler* fUniformHandler;
const GrShaderCaps* fShaderCaps;
const GrFragmentProcessor& fFp;
const char* fOutputColor;
const char* fInputColor;
const TransformedCoordVars& fTransformedCoords;
const TextureSamplers& fTexSamplers;
const TexelBuffers& fTexelBuffers;
};
virtual void emitCode(EmitArgs&) = 0;
void setData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor);
int numChildProcessors() const { return fChildProcessors.count(); }
GrGLSLFragmentProcessor* childProcessor(int index) {
return fChildProcessors[index];
}
inline void emitChild(int childIndex, SkString* outputColor, EmitArgs& parentArgs) {
this->emitChild(childIndex, "half4(1.0)", outputColor, parentArgs);
}
/** Will emit the code of a child proc in its own scope. Pass in the parent's EmitArgs and
* emitChild will automatically extract the coords and samplers of that child and pass them
* on to the child's emitCode(). Also, any uniforms or functions emitted by the child will
* have their names mangled to prevent redefinitions. The output color name is also mangled
* therefore in an in/out param. It will be declared in mangled form by emitChild(). It is
* legal to pass nullptr as inputColor, since all fragment processors are required to work
* without an input color.
*/
void emitChild(int childIndex, const char* inputColor, SkString* outputColor,
EmitArgs& parentArgs);
inline void emitChild(int childIndex, EmitArgs& args) {
this->emitChild(childIndex, "half4(1.0)", args);
}
/** Variation that uses the parent's output color variable to hold the child's output.*/
void emitChild(int childIndex, const char* inputColor, EmitArgs& parentArgs);
/**
* Pre-order traversal of a GLSLFP hierarchy, or of multiple trees with roots in an array of
* GLSLFPS. This agrees with the traversal order of GrFragmentProcessor::Iter
*/
class Iter : public SkNoncopyable {
public:
explicit Iter(GrGLSLFragmentProcessor* fp) { fFPStack.push_back(fp); }
explicit Iter(std::unique_ptr<GrGLSLFragmentProcessor> fps[], int cnt) {
for (int i = cnt - 1; i >= 0; --i) {
fFPStack.push_back(fps[i].get());
}
}
GrGLSLFragmentProcessor* next();
private:
SkSTArray<4, GrGLSLFragmentProcessor*, true> fFPStack;
};
protected:
/** A GrGLSLFragmentProcessor instance can be reused with any GrFragmentProcessor that produces
the same stage key; this function reads data from a GrFragmentProcessor and uploads any
uniform variables required by the shaders created in emitCode(). The GrFragmentProcessor
parameter is guaranteed to be of the same type that created this GrGLSLFragmentProcessor and
to have an identical processor key as the one that created this GrGLSLFragmentProcessor. */
virtual void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) {}
private:
void internalEmitChild(int, const char*, const char*, EmitArgs&);
SkTArray<GrGLSLFragmentProcessor*, true> fChildProcessors;
friend class GrFragmentProcessor;
};
#endif
|