1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGpuGL.h"
#include "GrCustomStage.h"
#include "GrGLProgramStage.h"
#include "GrGpuVertex.h"
typedef GrGLUniformManager::UniformHandle UniformHandle;
static const UniformHandle kInvalidUniformHandle = GrGLUniformManager::kInvalidUniformHandle;
#define SKIP_CACHE_CHECK true
#define GR_UINT32_MAX static_cast<uint32_t>(-1)
GrGpuGL::ProgramCache::ProgramCache(const GrGLContextInfo& gl)
: fCount(0)
, fCurrLRUStamp(0)
, fGL(gl) {
}
void GrGpuGL::ProgramCache::abandon() {
for (int i = 0; i < fCount; ++i) {
GrAssert(NULL != fEntries[i].fProgram.get());
fEntries[i].fProgram->abandon();
fEntries[i].fProgram.reset(NULL);
}
fCount = 0;
}
GrGLProgram* GrGpuGL::ProgramCache::getProgram(const ProgramDesc& desc,
const GrCustomStage** stages) {
Entry newEntry;
newEntry.fKey.setKeyData(desc.asKey());
Entry* entry = fHashCache.find(newEntry.fKey);
if (NULL == entry) {
newEntry.fProgram.reset(GrGLProgram::Create(fGL, desc, stages));
if (NULL == newEntry.fProgram.get()) {
return NULL;
}
if (fCount < kMaxEntries) {
entry = fEntries + fCount;
++fCount;
} else {
GrAssert(kMaxEntries == fCount);
entry = fEntries;
for (int i = 1; i < kMaxEntries; ++i) {
if (fEntries[i].fLRUStamp < entry->fLRUStamp) {
entry = fEntries + i;
}
}
fHashCache.remove(entry->fKey, entry);
}
*entry = newEntry;
fHashCache.insert(entry->fKey, entry);
}
entry->fLRUStamp = fCurrLRUStamp;
if (GR_UINT32_MAX == fCurrLRUStamp) {
// wrap around! just trash our LRU, one time hit.
for (int i = 0; i < fCount; ++i) {
fEntries[i].fLRUStamp = 0;
}
}
++fCurrLRUStamp;
return entry->fProgram;
}
////////////////////////////////////////////////////////////////////////////////
void GrGpuGL::abandonResources(){
INHERITED::abandonResources();
fProgramCache->abandon();
fHWProgramID = 0;
}
////////////////////////////////////////////////////////////////////////////////
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
void GrGpuGL::flushViewMatrix(DrawType type) {
const GrGLRenderTarget* rt = static_cast<const GrGLRenderTarget*>(this->getDrawState().getRenderTarget());
SkISize viewportSize;
const GrGLIRect& viewport = rt->getViewport();
viewportSize.set(viewport.fWidth, viewport.fHeight);
const GrMatrix& vm = this->getDrawState().getViewMatrix();
if (kStencilPath_DrawType == type) {
if (fHWPathMatrixState.fViewMatrix != vm ||
fHWPathMatrixState.fRTSize != viewportSize) {
// rescale the coords from skia's "device" coords to GL's normalized coords,
// and perform a y-flip.
GrMatrix m;
m.setScale(GrIntToScalar(2) / rt->width(), GrIntToScalar(-2) / rt->height());
m.postTranslate(-GR_Scalar1, GR_Scalar1);
m.preConcat(vm);
// GL wants a column-major 4x4.
GrGLfloat mv[] = {
// col 0
GrScalarToFloat(m[GrMatrix::kMScaleX]),
GrScalarToFloat(m[GrMatrix::kMSkewY]),
0,
GrScalarToFloat(m[GrMatrix::kMPersp0]),
// col 1
GrScalarToFloat(m[GrMatrix::kMSkewX]),
GrScalarToFloat(m[GrMatrix::kMScaleY]),
0,
GrScalarToFloat(m[GrMatrix::kMPersp1]),
// col 2
0, 0, 0, 0,
// col3
GrScalarToFloat(m[GrMatrix::kMTransX]),
GrScalarToFloat(m[GrMatrix::kMTransY]),
0.0f,
GrScalarToFloat(m[GrMatrix::kMPersp2])
};
GL_CALL(MatrixMode(GR_GL_PROJECTION));
GL_CALL(LoadMatrixf(mv));
fHWPathMatrixState.fViewMatrix = vm;
fHWPathMatrixState.fRTSize = viewportSize;
}
} else if (!fCurrentProgram->fViewMatrix.cheapEqualTo(vm) ||
fCurrentProgram->fViewportSize != viewportSize) {
GrMatrix m;
m.setAll(
GrIntToScalar(2) / viewportSize.fWidth, 0, -GR_Scalar1,
0,-GrIntToScalar(2) / viewportSize.fHeight, GR_Scalar1,
0, 0, GrMatrix::I()[8]);
m.setConcat(m, vm);
// ES doesn't allow you to pass true to the transpose param,
// so do our own transpose
GrGLfloat mt[] = {
GrScalarToFloat(m[GrMatrix::kMScaleX]),
GrScalarToFloat(m[GrMatrix::kMSkewY]),
GrScalarToFloat(m[GrMatrix::kMPersp0]),
GrScalarToFloat(m[GrMatrix::kMSkewX]),
GrScalarToFloat(m[GrMatrix::kMScaleY]),
GrScalarToFloat(m[GrMatrix::kMPersp1]),
GrScalarToFloat(m[GrMatrix::kMTransX]),
GrScalarToFloat(m[GrMatrix::kMTransY]),
GrScalarToFloat(m[GrMatrix::kMPersp2])
};
fCurrentProgram->fUniformManager.setMatrix3f(fCurrentProgram->fUniforms.fViewMatrixUni, mt);
fCurrentProgram->fViewMatrix = vm;
fCurrentProgram->fViewportSize = viewportSize;
}
}
///////////////////////////////////////////////////////////////////////////////
// helpers for texture matrices
void GrGpuGL::AdjustTextureMatrix(const GrGLTexture* texture,
GrMatrix* matrix) {
GrAssert(NULL != texture);
GrAssert(NULL != matrix);
GrGLTexture::Orientation orientation = texture->orientation();
if (GrGLTexture::kBottomUp_Orientation == orientation) {
GrMatrix invY;
invY.setAll(GR_Scalar1, 0, 0,
0, -GR_Scalar1, GR_Scalar1,
0, 0, GrMatrix::I()[8]);
matrix->postConcat(invY);
} else {
GrAssert(GrGLTexture::kTopDown_Orientation == orientation);
}
}
int GrGpuGL::TextureMatrixOptFlags(const GrGLTexture* texture,
const GrSamplerState& sampler) {
GrAssert(NULL != texture);
GrMatrix matrix;
sampler.getTotalMatrix(&matrix);
bool canBeIndentity = GrGLTexture::kTopDown_Orientation == texture->orientation();
if (canBeIndentity && matrix.isIdentity()) {
return GrGLProgram::StageDesc::kIdentityMatrix_OptFlagBit;
} else if (!matrix.hasPerspective()) {
return GrGLProgram::StageDesc::kNoPerspective_OptFlagBit;
}
return 0;
}
///////////////////////////////////////////////////////////////////////////////
void GrGpuGL::flushTextureMatrix(int s) {
const GrDrawState& drawState = this->getDrawState();
// FIXME: Still assuming only a single texture per custom stage
const GrCustomStage* stage = drawState.getSampler(s).getCustomStage();
if (0 == stage->numTextures()) {
return;
}
const GrGLTexture* texture = static_cast<const GrGLTexture*>(stage->texture(0));
if (NULL != texture) {
bool orientationChange = fCurrentProgram->fTextureOrientation[s] !=
texture->orientation();
UniformHandle matrixUni = fCurrentProgram->fUniforms.fStages[s].fTextureMatrixUni;
const GrMatrix& hwMatrix = fCurrentProgram->fTextureMatrices[s];
GrMatrix samplerMatrix;
drawState.getSampler(s).getTotalMatrix(&samplerMatrix);
if (kInvalidUniformHandle != matrixUni &&
(orientationChange || !hwMatrix.cheapEqualTo(samplerMatrix))) {
GrMatrix m = samplerMatrix;
AdjustTextureMatrix(texture, &m);
// ES doesn't allow you to pass true to the transpose param,
// so do our own transpose
GrGLfloat mt[] = {
GrScalarToFloat(m[GrMatrix::kMScaleX]),
GrScalarToFloat(m[GrMatrix::kMSkewY]),
GrScalarToFloat(m[GrMatrix::kMPersp0]),
GrScalarToFloat(m[GrMatrix::kMSkewX]),
GrScalarToFloat(m[GrMatrix::kMScaleY]),
GrScalarToFloat(m[GrMatrix::kMPersp1]),
GrScalarToFloat(m[GrMatrix::kMTransX]),
GrScalarToFloat(m[GrMatrix::kMTransY]),
GrScalarToFloat(m[GrMatrix::kMPersp2])
};
fCurrentProgram->fUniformManager.setMatrix3f(matrixUni, mt);
fCurrentProgram->fTextureMatrices[s] = samplerMatrix;
}
fCurrentProgram->fTextureOrientation[s] = texture->orientation();
}
}
void GrGpuGL::flushColor(GrColor color) {
const ProgramDesc& desc = fCurrentProgram->getDesc();
const GrDrawState& drawState = this->getDrawState();
if (this->getVertexLayout() & kColor_VertexLayoutBit) {
// color will be specified per-vertex as an attribute
// invalidate the const vertex attrib color
fHWConstAttribColor = GrColor_ILLEGAL;
} else {
switch (desc.fColorInput) {
case ProgramDesc::kAttribute_ColorInput:
if (fHWConstAttribColor != color) {
// OpenGL ES only supports the float varieties of glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(), c));
fHWConstAttribColor = color;
}
break;
case ProgramDesc::kUniform_ColorInput:
if (fCurrentProgram->fColor != color) {
// OpenGL ES doesn't support unsigned byte varieties of glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(color, c);
GrAssert(kInvalidUniformHandle != fCurrentProgram->fUniforms.fColorUni);
fCurrentProgram->fUniformManager.set4fv(fCurrentProgram->fUniforms.fColorUni,
0, 1, c);
fCurrentProgram->fColor = color;
}
break;
case ProgramDesc::kSolidWhite_ColorInput:
case ProgramDesc::kTransBlack_ColorInput:
break;
default:
GrCrash("Unknown color type.");
}
}
UniformHandle filterColorUni = fCurrentProgram->fUniforms.fColorFilterUni;
if (kInvalidUniformHandle != filterColorUni &&
fCurrentProgram->fColorFilterColor != drawState.getColorFilterColor()) {
GrGLfloat c[4];
GrColorToRGBAFloat(drawState.getColorFilterColor(), c);
fCurrentProgram->fUniformManager.set4fv(filterColorUni, 0, 1, c);
fCurrentProgram->fColorFilterColor = drawState.getColorFilterColor();
}
}
void GrGpuGL::flushCoverage(GrColor coverage) {
const ProgramDesc& desc = fCurrentProgram->getDesc();
// const GrDrawState& drawState = this->getDrawState();
if (this->getVertexLayout() & kCoverage_VertexLayoutBit) {
// coverage will be specified per-vertex as an attribute
// invalidate the const vertex attrib coverage
fHWConstAttribCoverage = GrColor_ILLEGAL;
} else {
switch (desc.fCoverageInput) {
case ProgramDesc::kAttribute_ColorInput:
if (fHWConstAttribCoverage != coverage) {
// OpenGL ES only supports the float varieties of
// glVertexAttrib
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GL_CALL(VertexAttrib4fv(GrGLProgram::CoverageAttributeIdx(),
c));
fHWConstAttribCoverage = coverage;
}
break;
case ProgramDesc::kUniform_ColorInput:
if (fCurrentProgram->fCoverage != coverage) {
// OpenGL ES doesn't support unsigned byte varieties of
// glUniform
GrGLfloat c[4];
GrColorToRGBAFloat(coverage, c);
GrAssert(kInvalidUniformHandle != fCurrentProgram->fUniforms.fCoverageUni);
fCurrentProgram->fUniformManager.set4fv(fCurrentProgram->fUniforms.fCoverageUni,
0, 1, c);
fCurrentProgram->fCoverage = coverage;
}
break;
case ProgramDesc::kSolidWhite_ColorInput:
case ProgramDesc::kTransBlack_ColorInput:
break;
default:
GrCrash("Unknown coverage type.");
}
}
}
bool GrGpuGL::flushGraphicsState(DrawType type) {
const GrDrawState& drawState = this->getDrawState();
// GrGpu::setupClipAndFlushState should have already checked this
// and bailed if not true.
GrAssert(NULL != drawState.getRenderTarget());
if (kStencilPath_DrawType != type) {
this->flushMiscFixedFunctionState();
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
BlendOptFlags blendOpts = this->getBlendOpts(false, &srcCoeff, &dstCoeff);
if (kSkipDraw_BlendOptFlag & blendOpts) {
return false;
}
const GrCustomStage* customStages [GrDrawState::kNumStages];
GrGLProgram::Desc desc;
this->buildProgram(kDrawPoints_DrawType == type, blendOpts, dstCoeff, customStages, &desc);
fCurrentProgram.reset(fProgramCache->getProgram(desc, customStages));
if (NULL == fCurrentProgram.get()) {
GrAssert(!"Failed to create program!");
return false;
}
fCurrentProgram.get()->ref();
if (fHWProgramID != fCurrentProgram->fProgramID) {
GL_CALL(UseProgram(fCurrentProgram->fProgramID));
fHWProgramID = fCurrentProgram->fProgramID;
}
fCurrentProgram->overrideBlend(&srcCoeff, &dstCoeff);
this->flushBlend(kDrawLines_DrawType == type, srcCoeff, dstCoeff);
GrColor color;
GrColor coverage;
if (blendOpts & kEmitTransBlack_BlendOptFlag) {
color = 0;
coverage = 0;
} else if (blendOpts & kEmitCoverage_BlendOptFlag) {
color = 0xffffffff;
coverage = drawState.getCoverage();
} else {
color = drawState.getColor();
coverage = drawState.getCoverage();
}
this->flushColor(color);
this->flushCoverage(coverage);
fCurrentProgram->setData(drawState);
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (this->isStageEnabled(s)) {
this->flushBoundTextureAndParams(s);
this->flushTextureMatrix(s);
}
}
}
this->flushStencil(type);
this->flushViewMatrix(type);
this->flushScissor();
this->flushAAState(type);
GrIRect* devRect = NULL;
GrIRect devClipBounds;
if (drawState.isClipState()) {
fClip->getConservativeBounds(drawState.getRenderTarget(),
&devClipBounds);
devRect = &devClipBounds;
}
// This must come after textures are flushed because a texture may need
// to be msaa-resolved (which will modify bound FBO state).
this->flushRenderTarget(devRect);
return true;
}
#if GR_TEXT_SCALAR_IS_USHORT
#define TEXT_COORDS_GL_TYPE GR_GL_UNSIGNED_SHORT
#define TEXT_COORDS_ARE_NORMALIZED 1
#elif GR_TEXT_SCALAR_IS_FLOAT
#define TEXT_COORDS_GL_TYPE GR_GL_FLOAT
#define TEXT_COORDS_ARE_NORMALIZED 0
#elif GR_TEXT_SCALAR_IS_FIXED
#define TEXT_COORDS_GL_TYPE GR_GL_FIXED
#define TEXT_COORDS_ARE_NORMALIZED 0
#else
#error "unknown GR_TEXT_SCALAR type"
#endif
void GrGpuGL::setupGeometry(int* startVertex,
int* startIndex,
int vertexCount,
int indexCount) {
int newColorOffset;
int newCoverageOffset;
int newTexCoordOffsets[GrDrawState::kMaxTexCoords];
int newEdgeOffset;
GrVertexLayout currLayout = this->getVertexLayout();
GrGLsizei newStride = VertexSizeAndOffsetsByIdx(
currLayout,
newTexCoordOffsets,
&newColorOffset,
&newCoverageOffset,
&newEdgeOffset);
int oldColorOffset;
int oldCoverageOffset;
int oldTexCoordOffsets[GrDrawState::kMaxTexCoords];
int oldEdgeOffset;
GrGLsizei oldStride = VertexSizeAndOffsetsByIdx(
fHWGeometryState.fVertexLayout,
oldTexCoordOffsets,
&oldColorOffset,
&oldCoverageOffset,
&oldEdgeOffset);
bool indexed = NULL != startIndex;
int extraVertexOffset;
int extraIndexOffset;
this->setBuffers(indexed, &extraVertexOffset, &extraIndexOffset);
GrGLenum scalarType;
bool texCoordNorm;
if (currLayout & kTextFormat_VertexLayoutBit) {
scalarType = TEXT_COORDS_GL_TYPE;
texCoordNorm = SkToBool(TEXT_COORDS_ARE_NORMALIZED);
} else {
GR_STATIC_ASSERT(GR_SCALAR_IS_FLOAT);
scalarType = GR_GL_FLOAT;
texCoordNorm = false;
}
size_t vertexOffset = (*startVertex + extraVertexOffset) * newStride;
*startVertex = 0;
if (indexed) {
*startIndex += extraIndexOffset;
}
// all the Pointers must be set if any of these are true
bool allOffsetsChange = fHWGeometryState.fArrayPtrsDirty ||
vertexOffset != fHWGeometryState.fVertexOffset ||
newStride != oldStride;
// position and tex coord offsets change if above conditions are true
// or the type/normalization changed based on text vs nontext type coords.
bool posAndTexChange = allOffsetsChange ||
(((TEXT_COORDS_GL_TYPE != GR_GL_FLOAT) || TEXT_COORDS_ARE_NORMALIZED) &&
(kTextFormat_VertexLayoutBit &
(fHWGeometryState.fVertexLayout ^ currLayout)));
if (posAndTexChange) {
int idx = GrGLProgram::PositionAttributeIdx();
GL_CALL(VertexAttribPointer(idx, 2, scalarType, false, newStride,
(GrGLvoid*)vertexOffset));
fHWGeometryState.fVertexOffset = vertexOffset;
}
for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
if (newTexCoordOffsets[t] > 0) {
GrGLvoid* texCoordOffset = (GrGLvoid*)(vertexOffset + newTexCoordOffsets[t]);
int idx = GrGLProgram::TexCoordAttributeIdx(t);
if (oldTexCoordOffsets[t] <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm,
newStride, texCoordOffset));
} else if (posAndTexChange ||
newTexCoordOffsets[t] != oldTexCoordOffsets[t]) {
GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm,
newStride, texCoordOffset));
}
} else if (oldTexCoordOffsets[t] > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t)));
}
}
if (newColorOffset > 0) {
GrGLvoid* colorOffset = (int8_t*)(vertexOffset + newColorOffset);
int idx = GrGLProgram::ColorAttributeIdx();
if (oldColorOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, colorOffset));
} else if (allOffsetsChange || newColorOffset != oldColorOffset) {
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, colorOffset));
}
} else if (oldColorOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx()));
}
if (newCoverageOffset > 0) {
GrGLvoid* coverageOffset = (int8_t*)(vertexOffset + newCoverageOffset);
int idx = GrGLProgram::CoverageAttributeIdx();
if (oldCoverageOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, coverageOffset));
} else if (allOffsetsChange || newCoverageOffset != oldCoverageOffset) {
GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE,
true, newStride, coverageOffset));
}
} else if (oldCoverageOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::CoverageAttributeIdx()));
}
if (newEdgeOffset > 0) {
GrGLvoid* edgeOffset = (int8_t*)(vertexOffset + newEdgeOffset);
int idx = GrGLProgram::EdgeAttributeIdx();
if (oldEdgeOffset <= 0) {
GL_CALL(EnableVertexAttribArray(idx));
GL_CALL(VertexAttribPointer(idx, 4, scalarType,
false, newStride, edgeOffset));
} else if (allOffsetsChange || newEdgeOffset != oldEdgeOffset) {
GL_CALL(VertexAttribPointer(idx, 4, scalarType,
false, newStride, edgeOffset));
}
} else if (oldEdgeOffset > 0) {
GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx()));
}
fHWGeometryState.fVertexLayout = currLayout;
fHWGeometryState.fArrayPtrsDirty = false;
}
namespace {
void setup_custom_stage(GrGLProgram::Desc::StageDesc* stage,
const GrSamplerState& sampler,
const GrGLCaps& caps,
const GrCustomStage** customStages,
GrGLProgram* program, int index) {
const GrCustomStage* customStage = sampler.getCustomStage();
if (customStage) {
const GrProgramStageFactory& factory = customStage->getFactory();
stage->fCustomStageKey = factory.glStageKey(*customStage, caps);
customStages[index] = customStage;
} else {
stage->fCustomStageKey = 0;
customStages[index] = NULL;
}
}
}
void GrGpuGL::buildProgram(bool isPoints,
BlendOptFlags blendOpts,
GrBlendCoeff dstCoeff,
const GrCustomStage** customStages,
ProgramDesc* desc) {
const GrDrawState& drawState = this->getDrawState();
// This should already have been caught
GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts));
bool skipCoverage = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag);
bool skipColor = SkToBool(blendOpts & (kEmitTransBlack_BlendOptFlag |
kEmitCoverage_BlendOptFlag));
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the vertex
// layout in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
// Must initialize all fields or cache will have false negatives!
desc->fVertexLayout = this->getVertexLayout();
desc->fEmitsPointSize = isPoints;
bool requiresAttributeColors = !skipColor &&
SkToBool(desc->fVertexLayout & kColor_VertexLayoutBit);
bool requiresAttributeCoverage = !skipCoverage &&
SkToBool(desc->fVertexLayout & kCoverage_VertexLayoutBit);
// fColorInput/fCoverageInput records how colors are specified for the.
// program. So we strip the bits from the layout to avoid false negatives
// when searching for an existing program in the cache.
desc->fVertexLayout &= ~(kColor_VertexLayoutBit | kCoverage_VertexLayoutBit);
desc->fColorFilterXfermode = skipColor ?
SkXfermode::kDst_Mode :
drawState.getColorFilterMode();
// no reason to do edge aa or look at per-vertex coverage if coverage is
// ignored
if (skipCoverage) {
desc->fVertexLayout &= ~(kEdge_VertexLayoutBit | kCoverage_VertexLayoutBit);
}
bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag);
bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) ||
(!requiresAttributeColors && 0xffffffff == drawState.getColor());
if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) {
desc->fColorInput = ProgramDesc::kTransBlack_ColorInput;
} else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) {
desc->fColorInput = ProgramDesc::kSolidWhite_ColorInput;
} else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) {
desc->fColorInput = ProgramDesc::kUniform_ColorInput;
} else {
desc->fColorInput = ProgramDesc::kAttribute_ColorInput;
}
bool covIsSolidWhite = !requiresAttributeCoverage && 0xffffffff == drawState.getCoverage();
if (skipCoverage) {
desc->fCoverageInput = ProgramDesc::kTransBlack_ColorInput;
} else if (covIsSolidWhite) {
desc->fCoverageInput = ProgramDesc::kSolidWhite_ColorInput;
} else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeCoverage) {
desc->fCoverageInput = ProgramDesc::kUniform_ColorInput;
} else {
desc->fCoverageInput = ProgramDesc::kAttribute_ColorInput;
}
int lastEnabledStage = -1;
if (!skipCoverage && (desc->fVertexLayout &GrDrawTarget::kEdge_VertexLayoutBit)) {
desc->fVertexEdgeType = drawState.getVertexEdgeType();
} else {
// use canonical value when not set to avoid cache misses
desc->fVertexEdgeType = GrDrawState::kHairLine_EdgeType;
}
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
StageDesc& stage = desc->fStages[s];
stage.fOptFlags = 0;
stage.setEnabled(this->isStageEnabled(s));
bool skip = s < drawState.getFirstCoverageStage() ? skipColor :
skipCoverage;
if (!skip && stage.isEnabled()) {
lastEnabledStage = s;
const GrSamplerState& sampler = drawState.getSampler(s);
// FIXME: Still assuming one texture per custom stage
const GrCustomStage* customStage = drawState.getSampler(s).getCustomStage();
if (customStage->numTextures() > 0) {
const GrGLTexture* texture =
static_cast<const GrGLTexture*>(customStage->texture(0));
GrMatrix samplerMatrix;
sampler.getTotalMatrix(&samplerMatrix);
if (NULL != texture) {
// We call this helper function rather then simply checking the client-specified
// texture matrix. This is because we may have to concat a y-inversion to account
// for texture orientation.
stage.fOptFlags |= TextureMatrixOptFlags(texture, sampler);
}
} else {
// Set identity to do the minimal amount of extra work for the no texture case.
// This will go away when custom stages manage their own texture matrix.
stage.fOptFlags |= StageDesc::kIdentityMatrix_OptFlagBit;
}
setup_custom_stage(&stage, sampler, this->glCaps(), customStages,
fCurrentProgram.get(), s);
} else {
stage.fOptFlags = 0;
stage.fCustomStageKey = 0;
customStages[s] = NULL;
}
}
desc->fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput;
// Currently the experimental GS will only work with triangle prims (and it doesn't do anything
// other than pass through values from the VS to the FS anyway).
#if 0 && GR_GL_EXPERIMENTAL_GS
desc->fExperimentalGS = this->getCaps().fGeometryShaderSupport;
#endif
// We want to avoid generating programs with different "first cov stage" values when they would
// compute the same result. We set field in the desc to kNumStages when either there are no
// coverage stages or the distinction between coverage and color is immaterial.
int firstCoverageStage = GrDrawState::kNumStages;
desc->fFirstCoverageStage = GrDrawState::kNumStages;
bool hasCoverage = drawState.getFirstCoverageStage() <= lastEnabledStage;
if (hasCoverage) {
firstCoverageStage = drawState.getFirstCoverageStage();
}
// other coverage inputs
if (!hasCoverage) {
hasCoverage = requiresAttributeCoverage ||
(desc->fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit);
}
if (hasCoverage) {
// color filter is applied between color/coverage computation
if (SkXfermode::kDst_Mode != desc->fColorFilterXfermode) {
desc->fFirstCoverageStage = firstCoverageStage;
}
if (this->getCaps().dualSourceBlendingSupport() &&
!(blendOpts & (kEmitCoverage_BlendOptFlag | kCoverageAsAlpha_BlendOptFlag))) {
if (kZero_GrBlendCoeff == dstCoeff) {
// write the coverage value to second color
desc->fDualSrcOutput = ProgramDesc::kCoverage_DualSrcOutput;
desc->fFirstCoverageStage = firstCoverageStage;
} else if (kSA_GrBlendCoeff == dstCoeff) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
desc->fDualSrcOutput = ProgramDesc::kCoverageISA_DualSrcOutput;
desc->fFirstCoverageStage = firstCoverageStage;
} else if (kSC_GrBlendCoeff == dstCoeff) {
// SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
desc->fDualSrcOutput = ProgramDesc::kCoverageISC_DualSrcOutput;
desc->fFirstCoverageStage = firstCoverageStage;
}
}
}
}
|