aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/gl/GrGLShaderBuilder.cpp
blob: 57294975f7dc4148e7914003086466b69efdfbc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "gl/GrGLShaderBuilder.h"
#include "gl/GrGLProgram.h"
#include "gl/GrGLUniformHandle.h"
#include "GrDrawEffect.h"
#include "GrTexture.h"

// number of each input/output type in a single allocation block
static const int kVarsPerBlock = 8;

// except FS outputs where we expect 2 at most.
static const int kMaxFSOutputs = 2;

// ES2 FS only guarantees mediump and lowp support
static const GrGLShaderVar::Precision kDefaultFragmentPrecision = GrGLShaderVar::kMedium_Precision;

typedef GrGLUniformManager::UniformHandle UniformHandle;
///////////////////////////////////////////////////////////////////////////////

namespace {

inline const char* sample_function_name(GrSLType type, GrGLSLGeneration glslGen) {
    if (kVec2f_GrSLType == type) {
        return glslGen >= k130_GrGLSLGeneration ? "texture" : "texture2D";
    } else {
        GrAssert(kVec3f_GrSLType == type);
        return glslGen >= k130_GrGLSLGeneration ? "textureProj" : "texture2DProj";
    }
}

/**
 * Do we need to either map r,g,b->a or a->r. configComponentMask indicates which channels are
 * present in the texture's config. swizzleComponentMask indicates the channels present in the
 * shader swizzle.
 */
inline bool swizzle_requires_alpha_remapping(const GrGLCaps& caps,
                                             uint32_t configComponentMask,
                                             uint32_t swizzleComponentMask) {
    if (caps.textureSwizzleSupport()) {
        // Any remapping is handled using texture swizzling not shader modifications.
        return false;
    }
    // check if the texture is alpha-only
    if (kA_GrColorComponentFlag == configComponentMask) {
        if (caps.textureRedSupport() && (kA_GrColorComponentFlag & swizzleComponentMask)) {
            // we must map the swizzle 'a's to 'r'.
            return true;
        }
        if (kRGB_GrColorComponentFlags & swizzleComponentMask) {
            // The 'r', 'g', and/or 'b's must be mapped to 'a' according to our semantics that
            // alpha-only textures smear alpha across all four channels when read.
            return true;
        }
    }
    return false;
}

void append_swizzle(SkString* outAppend,
                    const GrGLShaderBuilder::TextureSampler& texSampler,
                    const GrGLCaps& caps) {
    const char* swizzle = texSampler.swizzle();
    char mangledSwizzle[5];

    // The swizzling occurs using texture params instead of shader-mangling if ARB_texture_swizzle
    // is available.
    if (!caps.textureSwizzleSupport() &&
        (kA_GrColorComponentFlag == texSampler.configComponentMask())) {
        char alphaChar = caps.textureRedSupport() ? 'r' : 'a';
        int i;
        for (i = 0; '\0' != swizzle[i]; ++i) {
            mangledSwizzle[i] = alphaChar;
        }
        mangledSwizzle[i] ='\0';
        swizzle = mangledSwizzle;
    }
    // For shader prettiness we omit the swizzle rather than appending ".rgba".
    if (memcmp(swizzle, "rgba", 4)) {
        outAppend->appendf(".%s", swizzle);
    }
}

}

static const char kDstCopyColorName[] = "_dstColor";

///////////////////////////////////////////////////////////////////////////////

GrGLShaderBuilder::GrGLShaderBuilder(const GrGLContextInfo& ctxInfo,
                                     GrGLUniformManager& uniformManager,
                                     const GrGLProgramDesc& desc)
    : fUniforms(kVarsPerBlock)
    , fVSAttrs(kVarsPerBlock)
    , fVSOutputs(kVarsPerBlock)
    , fGSInputs(kVarsPerBlock)
    , fGSOutputs(kVarsPerBlock)
    , fFSInputs(kVarsPerBlock)
    , fFSOutputs(kMaxFSOutputs)
    , fCtxInfo(ctxInfo)
    , fUniformManager(uniformManager)
    , fFSFeaturesAddedMask(0)
#if GR_GL_EXPERIMENTAL_GS
    , fUsesGS(SkToBool(desc.getHeader().fExperimentalGS))
#else
    , fUsesGS(false)
#endif
    , fSetupFragPosition(false)
    , fTopLeftFragPosRead(kTopLeftFragPosRead_FragPosKey == desc.getHeader().fFragPosKey) {

    const GrGLProgramDesc::KeyHeader& header = desc.getHeader();

    fPositionVar = &fVSAttrs.push_back();
    fPositionVar->set(kVec2f_GrSLType, GrGLShaderVar::kAttribute_TypeModifier, "aPosition");
    if (-1 != header.fLocalCoordAttributeIndex) {
        fLocalCoordsVar = &fVSAttrs.push_back();
        fLocalCoordsVar->set(kVec2f_GrSLType,
                             GrGLShaderVar::kAttribute_TypeModifier,
                             "aLocalCoords");
    } else {
        fLocalCoordsVar = fPositionVar;
    }
    // Emit code to read the dst copy textue if necessary.
    if (kNoDstRead_DstReadKey != header.fDstReadKey &&
        GrGLCaps::kNone_FBFetchType == ctxInfo.caps()->fbFetchType()) {
        bool topDown = SkToBool(kTopLeftOrigin_DstReadKeyBit & header.fDstReadKey);
        const char* dstCopyTopLeftName;
        const char* dstCopyCoordScaleName;
        uint32_t configMask;
        if (SkToBool(kUseAlphaConfig_DstReadKeyBit & header.fDstReadKey)) {
            configMask = kA_GrColorComponentFlag;
        } else {
            configMask = kRGBA_GrColorComponentFlags;
        }
        fDstCopySampler.init(this, configMask, "rgba", 0);

        fDstCopyTopLeftUniform = this->addUniform(kFragment_ShaderType,
                                                  kVec2f_GrSLType,
                                                  "DstCopyUpperLeft",
                                                  &dstCopyTopLeftName);
        fDstCopyScaleUniform     = this->addUniform(kFragment_ShaderType,
                                                    kVec2f_GrSLType,
                                                    "DstCopyCoordScale",
                                                    &dstCopyCoordScaleName);
        const char* fragPos = this->fragmentPosition();
        this->fsCodeAppend("\t// Read color from copy of the destination.\n");
        this->fsCodeAppendf("\tvec2 _dstTexCoord = (%s.xy - %s) * %s;\n",
                            fragPos, dstCopyTopLeftName, dstCopyCoordScaleName);
        if (!topDown) {
            this->fsCodeAppend("\t_dstTexCoord.y = 1.0 - _dstTexCoord.y;\n");
        }
        this->fsCodeAppendf("\tvec4 %s = ", kDstCopyColorName);
        this->appendTextureLookup(kFragment_ShaderType, fDstCopySampler, "_dstTexCoord");
        this->fsCodeAppend(";\n\n");
    }
}

bool GrGLShaderBuilder::enableFeature(GLSLFeature feature) {
    switch (feature) {
        case kStandardDerivatives_GLSLFeature:
            if (!fCtxInfo.caps()->shaderDerivativeSupport()) {
                return false;
            }
            if (kES_GrGLBinding == fCtxInfo.binding()) {
                this->addFSFeature(1 << kStandardDerivatives_GLSLFeature,
                                   "GL_OES_standard_derivatives");
            }
            return true;
        default:
            GrCrash("Unexpected GLSLFeature requested.");
            return false;
    }
}

bool GrGLShaderBuilder::enablePrivateFeature(GLSLPrivateFeature feature) {
    switch (feature) {
        case kFragCoordConventions_GLSLPrivateFeature:
            if (!fCtxInfo.caps()->fragCoordConventionsSupport()) {
                return false;
            }
            if (fCtxInfo.glslGeneration() < k150_GrGLSLGeneration) {
                this->addFSFeature(1 << kFragCoordConventions_GLSLPrivateFeature,
                                   "GL_ARB_fragment_coord_conventions");
            }
            return true;
        case kEXTShaderFramebufferFetch_GLSLPrivateFeature:
            if (GrGLCaps::kEXT_FBFetchType != fCtxInfo.caps()->fbFetchType()) {
                return false;
            }
            this->addFSFeature(1 << kEXTShaderFramebufferFetch_GLSLPrivateFeature,
                               "GL_EXT_shader_framebuffer_fetch");
            return true;
        case kNVShaderFramebufferFetch_GLSLPrivateFeature:
            if (GrGLCaps::kNV_FBFetchType != fCtxInfo.caps()->fbFetchType()) {
                return false;
            }
            this->addFSFeature(1 << kNVShaderFramebufferFetch_GLSLPrivateFeature,
                               "GL_NV_shader_framebuffer_fetch");
            return true;
        default:
            GrCrash("Unexpected GLSLPrivateFeature requested.");
            return false;
    }
}

void GrGLShaderBuilder::addFSFeature(uint32_t featureBit, const char* extensionName) {
    if (!(featureBit & fFSFeaturesAddedMask)) {
        fFSExtensions.appendf("#extension %s: require\n", extensionName);
        fFSFeaturesAddedMask |= featureBit;
    }
}

void GrGLShaderBuilder::nameVariable(SkString* out, char prefix, const char* name) {
    if ('\0' == prefix) {
        *out = name;
    } else {
        out->printf("%c%s", prefix, name);
    }
    if (fCodeStage.inStageCode()) {
        if (out->endsWith('_')) {
            // Names containing "__" are reserved.
            out->append("x");
        }
        out->appendf("_Stage%d", fCodeStage.stageIndex());
    }
}

const char* GrGLShaderBuilder::dstColor() {
    if (fCodeStage.inStageCode()) {
        const GrEffectRef& effect = *fCodeStage.effectStage()->getEffect();
        if (!effect->willReadDstColor()) {
            GrDebugCrash("GrGLEffect asked for dst color but its generating GrEffect "
                         "did not request access.");
            return "";
        }
    }
    static const char kFBFetchColorName[] = "gl_LastFragData[0]";
    GrGLCaps::FBFetchType fetchType = fCtxInfo.caps()->fbFetchType();
    if (GrGLCaps::kEXT_FBFetchType == fetchType) {
        SkAssertResult(this->enablePrivateFeature(kEXTShaderFramebufferFetch_GLSLPrivateFeature));
        return kFBFetchColorName;
    } else if (GrGLCaps::kNV_FBFetchType == fetchType) {
        SkAssertResult(this->enablePrivateFeature(kNVShaderFramebufferFetch_GLSLPrivateFeature));
        return kFBFetchColorName;
    } else if (fDstCopySampler.isInitialized()) {
        return kDstCopyColorName;
    } else {
        return "";
    }
}

void GrGLShaderBuilder::codeAppendf(ShaderType type, const char format[], va_list args) {
    SkString* string = NULL;
    switch (type) {
        case kVertex_ShaderType:
            string = &fVSCode;
            break;
        case kGeometry_ShaderType:
            string = &fGSCode;
            break;
        case kFragment_ShaderType:
            string = &fFSCode;
            break;
        default:
            GrCrash("Invalid shader type");
    }
    string->appendf(format, args);
}

void GrGLShaderBuilder::codeAppend(ShaderType type, const char* str) {
    SkString* string = NULL;
    switch (type) {
        case kVertex_ShaderType:
            string = &fVSCode;
            break;
        case kGeometry_ShaderType:
            string = &fGSCode;
            break;
        case kFragment_ShaderType:
            string = &fFSCode;
            break;
        default:
            GrCrash("Invalid shader type");
    }
    string->append(str);
}

void GrGLShaderBuilder::appendTextureLookup(SkString* out,
                                            const GrGLShaderBuilder::TextureSampler& sampler,
                                            const char* coordName,
                                            GrSLType varyingType) const {
    GrAssert(NULL != coordName);

    out->appendf("%s(%s, %s)",
                 sample_function_name(varyingType, fCtxInfo.glslGeneration()),
                 this->getUniformCStr(sampler.fSamplerUniform),
                 coordName);
    append_swizzle(out, sampler, *fCtxInfo.caps());
}

void GrGLShaderBuilder::appendTextureLookup(ShaderType type,
                                            const GrGLShaderBuilder::TextureSampler& sampler,
                                            const char* coordName,
                                            GrSLType varyingType) {
    GrAssert(kFragment_ShaderType == type);
    this->appendTextureLookup(&fFSCode, sampler, coordName, varyingType);
}

void GrGLShaderBuilder::appendTextureLookupAndModulate(
                                            ShaderType type,
                                            const char* modulation,
                                            const GrGLShaderBuilder::TextureSampler& sampler,
                                            const char* coordName,
                                            GrSLType varyingType) {
    GrAssert(kFragment_ShaderType == type);
    SkString lookup;
    this->appendTextureLookup(&lookup, sampler, coordName, varyingType);
    GrGLSLModulatef<4>(&fFSCode, modulation, lookup.c_str());
}

GrBackendEffectFactory::EffectKey GrGLShaderBuilder::KeyForTextureAccess(
                                                            const GrTextureAccess& access,
                                                            const GrGLCaps& caps) {
    uint32_t configComponentMask = GrPixelConfigComponentMask(access.getTexture()->config());
    if (swizzle_requires_alpha_remapping(caps, configComponentMask, access.swizzleMask())) {
        return 1;
    } else {
        return 0;
    }
}

GrGLShaderBuilder::DstReadKey GrGLShaderBuilder::KeyForDstRead(const GrTexture* dstCopy,
                                                               const GrGLCaps& caps) {
    uint32_t key = kYesDstRead_DstReadKeyBit;
    if (GrGLCaps::kNone_FBFetchType != caps.fbFetchType()) {
        return key;
    }
    GrAssert(NULL != dstCopy);
    if (!caps.textureSwizzleSupport() && GrPixelConfigIsAlphaOnly(dstCopy->config())) {
        // The fact that the config is alpha-only must be considered when generating code.
        key |= kUseAlphaConfig_DstReadKeyBit;
    }
    if (kTopLeft_GrSurfaceOrigin == dstCopy->origin()) {
        key |= kTopLeftOrigin_DstReadKeyBit;
    }
    GrAssert(static_cast<DstReadKey>(key) == key);
    return static_cast<DstReadKey>(key);
}

GrGLShaderBuilder::FragPosKey GrGLShaderBuilder::KeyForFragmentPosition(const GrRenderTarget* dst,
                                                                        const GrGLCaps&) {
    if (kTopLeft_GrSurfaceOrigin == dst->origin()) {
        return kTopLeftFragPosRead_FragPosKey;
    } else {
        return kBottomLeftFragPosRead_FragPosKey;
    }
}


const GrGLenum* GrGLShaderBuilder::GetTexParamSwizzle(GrPixelConfig config, const GrGLCaps& caps) {
    if (caps.textureSwizzleSupport() && GrPixelConfigIsAlphaOnly(config)) {
        if (caps.textureRedSupport()) {
            static const GrGLenum gRedSmear[] = { GR_GL_RED, GR_GL_RED, GR_GL_RED, GR_GL_RED };
            return gRedSmear;
        } else {
            static const GrGLenum gAlphaSmear[] = { GR_GL_ALPHA, GR_GL_ALPHA,
                                                    GR_GL_ALPHA, GR_GL_ALPHA };
            return gAlphaSmear;
        }
    } else {
        static const GrGLenum gStraight[] = { GR_GL_RED, GR_GL_GREEN, GR_GL_BLUE, GR_GL_ALPHA };
        return gStraight;
    }
}

GrGLUniformManager::UniformHandle GrGLShaderBuilder::addUniformArray(uint32_t visibility,
                                                                     GrSLType type,
                                                                     const char* name,
                                                                     int count,
                                                                     const char** outName) {
    GrAssert(name && strlen(name));
    SkDEBUGCODE(static const uint32_t kVisibilityMask = kVertex_ShaderType | kFragment_ShaderType);
    GrAssert(0 == (~kVisibilityMask & visibility));
    GrAssert(0 != visibility);

    BuilderUniform& uni = fUniforms.push_back();
    UniformHandle h = GrGLUniformManager::UniformHandle::CreateFromUniformIndex(fUniforms.count() - 1);
    GR_DEBUGCODE(UniformHandle h2 =)
    fUniformManager.appendUniform(type, count);
    // We expect the uniform manager to initially have no uniforms and that all uniforms are added
    // by this function. Therefore, the handles should match.
    GrAssert(h2 == h);
    uni.fVariable.setType(type);
    uni.fVariable.setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
    this->nameVariable(uni.fVariable.accessName(), 'u', name);
    uni.fVariable.setArrayCount(count);
    uni.fVisibility = visibility;

    // If it is visible in both the VS and FS, the precision must match.
    // We declare a default FS precision, but not a default VS. So set the var
    // to use the default FS precision.
    if ((kVertex_ShaderType | kFragment_ShaderType) == visibility) {
        // the fragment and vertex precisions must match
        uni.fVariable.setPrecision(kDefaultFragmentPrecision);
    }

    if (NULL != outName) {
        *outName = uni.fVariable.c_str();
    }

    return h;
}

bool GrGLShaderBuilder::addAttribute(GrSLType type,
                                     const char* name) {
    for (int i = 0; i < fVSAttrs.count(); ++i) {
        const GrGLShaderVar& attr = fVSAttrs[i];
        // if attribute already added, don't add it again
        if (attr.getName().equals(name)) {
            GrAssert(attr.getType() == type);
            return false;
        }
    }
    fVSAttrs.push_back().set(type,
                             GrGLShaderVar::kAttribute_TypeModifier,
                             name);
    return true;
}

void GrGLShaderBuilder::addVarying(GrSLType type,
                                   const char* name,
                                   const char** vsOutName,
                                   const char** fsInName) {
    fVSOutputs.push_back();
    fVSOutputs.back().setType(type);
    fVSOutputs.back().setTypeModifier(GrGLShaderVar::kVaryingOut_TypeModifier);
    this->nameVariable(fVSOutputs.back().accessName(), 'v', name);

    if (vsOutName) {
        *vsOutName = fVSOutputs.back().getName().c_str();
    }
    // input to FS comes either from VS or GS
    const SkString* fsName;
    if (fUsesGS) {
        // if we have a GS take each varying in as an array
        // and output as non-array.
        fGSInputs.push_back();
        fGSInputs.back().setType(type);
        fGSInputs.back().setTypeModifier(GrGLShaderVar::kVaryingIn_TypeModifier);
        fGSInputs.back().setUnsizedArray();
        *fGSInputs.back().accessName() = fVSOutputs.back().getName();
        fGSOutputs.push_back();
        fGSOutputs.back().setType(type);
        fGSOutputs.back().setTypeModifier(GrGLShaderVar::kVaryingOut_TypeModifier);
        this->nameVariable(fGSOutputs.back().accessName(), 'g', name);
        fsName = fGSOutputs.back().accessName();
    } else {
        fsName = fVSOutputs.back().accessName();
    }
    fFSInputs.push_back();
    fFSInputs.back().setType(type);
    fFSInputs.back().setTypeModifier(GrGLShaderVar::kVaryingIn_TypeModifier);
    fFSInputs.back().setName(*fsName);
    if (fsInName) {
        *fsInName = fsName->c_str();
    }
}

const char* GrGLShaderBuilder::fragmentPosition() {
    if (fCodeStage.inStageCode()) {
        const GrEffectRef& effect = *fCodeStage.effectStage()->getEffect();
        if (!effect->willReadFragmentPosition()) {
            GrDebugCrash("GrGLEffect asked for frag position but its generating GrEffect "
                         "did not request access.");
            return "";
        }
    }
    if (fTopLeftFragPosRead) {
        if (!fSetupFragPosition) {
            fFSInputs.push_back().set(kVec4f_GrSLType,
                                      GrGLShaderVar::kIn_TypeModifier,
                                      "gl_FragCoord",
                                      GrGLShaderVar::kDefault_Precision);
            fSetupFragPosition = true;
        }
        return "gl_FragCoord";
    } else if (fCtxInfo.caps()->fragCoordConventionsSupport()) {
        if (!fSetupFragPosition) {
            SkAssertResult(this->enablePrivateFeature(kFragCoordConventions_GLSLPrivateFeature));
            fFSInputs.push_back().set(kVec4f_GrSLType,
                                      GrGLShaderVar::kIn_TypeModifier,
                                      "gl_FragCoord",
                                      GrGLShaderVar::kDefault_Precision,
                                      GrGLShaderVar::kUpperLeft_Origin);
            fSetupFragPosition = true;
        }
        return "gl_FragCoord";
    } else {
        static const char* kCoordName = "fragCoordYDown";
        if (!fSetupFragPosition) {
            // temporarily change the stage index because we're inserting non-stage code.
            CodeStage::AutoStageRestore csar(&fCodeStage, NULL);

            GrAssert(!fRTHeightUniform.isValid());
            const char* rtHeightName;

            fRTHeightUniform = this->addUniform(kFragment_ShaderType,
                                                kFloat_GrSLType,
                                                "RTHeight",
                                                &rtHeightName);

            this->fFSCode.prependf("\tvec4 %s = vec4(gl_FragCoord.x, %s - gl_FragCoord.y, gl_FragCoord.zw);\n",
                                   kCoordName, rtHeightName);
            fSetupFragPosition = true;
        }
        GrAssert(fRTHeightUniform.isValid());
        return kCoordName;
    }
}


void GrGLShaderBuilder::emitFunction(ShaderType shader,
                                     GrSLType returnType,
                                     const char* name,
                                     int argCnt,
                                     const GrGLShaderVar* args,
                                     const char* body,
                                     SkString* outName) {
    GrAssert(kFragment_ShaderType == shader);
    fFSFunctions.append(GrGLSLTypeString(returnType));
    this->nameVariable(outName, '\0', name);
    fFSFunctions.appendf(" %s", outName->c_str());
    fFSFunctions.append("(");
    for (int i = 0; i < argCnt; ++i) {
        args[i].appendDecl(fCtxInfo, &fFSFunctions);
        if (i < argCnt - 1) {
            fFSFunctions.append(", ");
        }
    }
    fFSFunctions.append(") {\n");
    fFSFunctions.append(body);
    fFSFunctions.append("}\n\n");
}

namespace {

inline void append_default_precision_qualifier(GrGLShaderVar::Precision p,
                                               GrGLBinding binding,
                                               SkString* str) {
    // Desktop GLSL has added precision qualifiers but they don't do anything.
    if (kES_GrGLBinding == binding) {
        switch (p) {
            case GrGLShaderVar::kHigh_Precision:
                str->append("precision highp float;\n");
                break;
            case GrGLShaderVar::kMedium_Precision:
                str->append("precision mediump float;\n");
                break;
            case GrGLShaderVar::kLow_Precision:
                str->append("precision lowp float;\n");
                break;
            case GrGLShaderVar::kDefault_Precision:
                GrCrash("Default precision now allowed.");
            default:
                GrCrash("Unknown precision value.");
        }
    }
}
}

void GrGLShaderBuilder::appendDecls(const VarArray& vars, SkString* out) const {
    for (int i = 0; i < vars.count(); ++i) {
        vars[i].appendDecl(fCtxInfo, out);
        out->append(";\n");
    }
}

void GrGLShaderBuilder::appendUniformDecls(ShaderType stype, SkString* out) const {
    for (int i = 0; i < fUniforms.count(); ++i) {
        if (fUniforms[i].fVisibility & stype) {
            fUniforms[i].fVariable.appendDecl(fCtxInfo, out);
            out->append(";\n");
        }
    }
}

void GrGLShaderBuilder::getShader(ShaderType type, SkString* shaderStr) const {
    const char* version = GrGetGLSLVersionDecl(fCtxInfo.binding(), fCtxInfo.glslGeneration());

    switch (type) {
        case kVertex_ShaderType:
            *shaderStr = version;
            this->appendUniformDecls(kVertex_ShaderType, shaderStr);
            this->appendDecls(fVSAttrs, shaderStr);
            this->appendDecls(fVSOutputs, shaderStr);
            shaderStr->append("void main() {\n");
            shaderStr->append(fVSCode);
            shaderStr->append("}\n");
            break;
        case kGeometry_ShaderType:
            if (fUsesGS) {
                *shaderStr = version;
                shaderStr->append(fGSHeader);
                this->appendDecls(fGSInputs, shaderStr);
                this->appendDecls(fGSOutputs, shaderStr);
                shaderStr->append("void main() {\n");
                shaderStr->append(fGSCode);
                shaderStr->append("}\n");
            } else {
                shaderStr->reset();
            }
            break;
        case kFragment_ShaderType:
            *shaderStr = version;
            shaderStr->append(fFSExtensions);
            append_default_precision_qualifier(kDefaultFragmentPrecision,
                                               fCtxInfo.binding(),
                                               shaderStr);
            this->appendUniformDecls(kFragment_ShaderType, shaderStr);
            this->appendDecls(fFSInputs, shaderStr);
            // We shouldn't have declared outputs on 1.10
            GrAssert(k110_GrGLSLGeneration != fCtxInfo.glslGeneration() || fFSOutputs.empty());
            this->appendDecls(fFSOutputs, shaderStr);
            shaderStr->append(fFSFunctions);
            shaderStr->append("void main() {\n");
            shaderStr->append(fFSCode);
            shaderStr->append("}\n");
            break;
    }
 }

void GrGLShaderBuilder::finished(GrGLuint programID) {
    fUniformManager.getUniformLocations(programID, fUniforms);
}

void GrGLShaderBuilder::emitEffects(
                        const GrEffectStage* effectStages[],
                        const GrBackendEffectFactory::EffectKey effectKeys[],
                        int effectCnt,
                        SkString* fsInOutColor,
                        GrSLConstantVec* fsInOutColorKnownValue,
                        SkTArray<GrGLUniformManager::UniformHandle, true>* effectSamplerHandles[],
                        GrGLEffect* glEffects[]) {
    bool effectEmitted = false;

    SkString inColor = *fsInOutColor;
    SkString outColor;

    for (int e = 0; e < effectCnt; ++e) {
        GrAssert(NULL != effectStages[e] && NULL != effectStages[e]->getEffect());
        const GrEffectStage& stage = *effectStages[e];
        const GrEffectRef& effect = *stage.getEffect();

        CodeStage::AutoStageRestore csar(&fCodeStage, &stage);

        int numTextures = effect->numTextures();
        SkSTArray<8, GrGLShaderBuilder::TextureSampler> textureSamplers;
        textureSamplers.push_back_n(numTextures);
        for (int t = 0; t < numTextures; ++t) {
            textureSamplers[t].init(this, &effect->textureAccess(t), t);
            effectSamplerHandles[e]->push_back(textureSamplers[t].fSamplerUniform);
        }
        GrDrawEffect drawEffect(stage, this->hasExplicitLocalCoords());

        int numAttributes = stage.getVertexAttribIndexCount();
        const int* attributeIndices = stage.getVertexAttribIndices();
        SkSTArray<GrEffect::kMaxVertexAttribs, SkString> attributeNames;
        for (int a = 0; a < numAttributes; ++a) {
            // TODO: Make addAttribute mangle the name.
            SkString attributeName("aAttr");
            attributeName.appendS32(attributeIndices[a]);
            if (this->addAttribute(effect->vertexAttribType(a), attributeName.c_str())) {
                fEffectAttributes.push_back().set(attributeIndices[a], attributeName);
            }
        }

        glEffects[e] = effect->getFactory().createGLInstance(drawEffect);

        if (kZeros_GrSLConstantVec == *fsInOutColorKnownValue) {
            // Effects have no way to communicate zeros, they treat an empty string as ones.
            this->nameVariable(&inColor, '\0', "input");
            this->fsCodeAppendf("\tvec4 %s = %s;\n", inColor.c_str(), GrGLSLZerosVecf(4));
        }

        // create var to hold stage result
        this->nameVariable(&outColor, '\0', "output");
        this->fsCodeAppendf("\tvec4 %s;\n", outColor.c_str());

        // Enclose custom code in a block to avoid namespace conflicts
        SkString openBrace;
        openBrace.printf("\t{ // Stage %d: %s\n", fCodeStage.stageIndex(), glEffects[e]->name());
        this->fVSCode.append(openBrace);
        this->fFSCode.append(openBrace);

        glEffects[e]->emitCode(this,
                               drawEffect,
                               effectKeys[e],
                               outColor.c_str(),
                               inColor.isEmpty() ? NULL : inColor.c_str(),
                               textureSamplers);
        this->fVSCode.append("\t}\n");
        this->fFSCode.append("\t}\n");

        inColor = outColor;
        *fsInOutColorKnownValue = kNone_GrSLConstantVec;
        effectEmitted = true;
    }

    if (effectEmitted) {
        *fsInOutColor = outColor;
    }
}

const SkString* GrGLShaderBuilder::getEffectAttributeName(int attributeIndex) const {
    const AttributePair* attribEnd = this->getEffectAttributes().end();
    for (const AttributePair* attrib = this->getEffectAttributes().begin();
         attrib != attribEnd;
         ++attrib) {
        if (attrib->fIndex == attributeIndex) {
            return &attrib->fName;
        }
    }

    return NULL;
}