1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgramDesc.h"
#include "GrProcessor.h"
#include "GrPipeline.h"
#include "SkChecksum.h"
#include "gl/GrGLDefines.h"
#include "gl/GrGLTexture.h"
#include "gl/GrGLTypes.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLCaps.h"
static uint8_t texture_target_key(GrGLenum target) {
switch (target) {
case GR_GL_TEXTURE_2D:
return 0;
case GR_GL_TEXTURE_EXTERNAL:
return 1;
case GR_GL_TEXTURE_RECTANGLE:
return 2;
default:
SkFAIL("Unexpected texture target.");
return 0;
}
}
static void add_texture_key(GrProcessorKeyBuilder* b, const GrProcessor& proc,
const GrGLSLCaps& caps) {
int numTextures = proc.numTextures();
// Need two bytes per key (swizzle and target).
int word32Count = (proc.numTextures() + 1) / 2;
if (0 == word32Count) {
return;
}
uint16_t* k16 = SkTCast<uint16_t*>(b->add32n(word32Count));
for (int i = 0; i < numTextures; ++i) {
const GrTextureAccess& access = proc.textureAccess(i);
GrGLTexture* texture = static_cast<GrGLTexture*>(access.getTexture());
k16[i] = SkToU16(caps.configTextureSwizzle(texture->config()).asKey() |
(texture_target_key(texture->target()) << 8));
}
// zero the last 16 bits if the number of textures is odd.
if (numTextures & 0x1) {
k16[numTextures] = 0;
}
}
/**
* A function which emits a meta key into the key builder. This is required because shader code may
* be dependent on properties of the effect that the effect itself doesn't use
* in its key (e.g. the pixel format of textures used). So we create a meta-key for
* every effect using this function. It is also responsible for inserting the effect's class ID
* which must be different for every GrProcessor subclass. It can fail if an effect uses too many
* transforms, etc, for the space allotted in the meta-key. NOTE, both FPs and GPs share this
* function because it is hairy, though FPs do not have attribs, and GPs do not have transforms
*/
static bool gen_meta_key(const GrProcessor& proc,
const GrGLSLCaps& glslCaps,
uint32_t transformKey,
GrProcessorKeyBuilder* b) {
size_t processorKeySize = b->size();
uint32_t classID = proc.classID();
// Currently we allow 16 bits for the class id and the overall processor key size.
static const uint32_t kMetaKeyInvalidMask = ~((uint32_t) SK_MaxU16);
if ((processorKeySize | classID) & kMetaKeyInvalidMask) {
return false;
}
add_texture_key(b, proc, glslCaps);
uint32_t* key = b->add32n(2);
key[0] = (classID << 16) | SkToU32(processorKeySize);
key[1] = transformKey;
return true;
}
static bool gen_frag_proc_and_meta_keys(const GrPrimitiveProcessor& primProc,
const GrFragmentProcessor& fp,
const GrGLSLCaps& glslCaps,
GrProcessorKeyBuilder* b) {
for (int i = 0; i < fp.numChildProcessors(); ++i) {
if (!gen_frag_proc_and_meta_keys(primProc, fp.childProcessor(i), glslCaps, b)) {
return false;
}
}
fp.getGLSLProcessorKey(glslCaps, b);
return gen_meta_key(fp, glslCaps, primProc.getTransformKey(fp.coordTransforms(),
fp.numTransformsExclChildren()), b);
}
bool GrGLProgramDescBuilder::Build(GrProgramDesc* desc,
const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
const GrGLSLCaps& glslCaps) {
// The descriptor is used as a cache key. Thus when a field of the
// descriptor will not affect program generation (because of the attribute
// bindings in use or other descriptor field settings) it should be set
// to a canonical value to avoid duplicate programs with different keys.
GrGLProgramDesc* glDesc = (GrGLProgramDesc*) desc;
GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t));
// Make room for everything up to the effect keys.
glDesc->key().reset();
glDesc->key().push_back_n(kProcessorKeysOffset);
GrProcessorKeyBuilder b(&glDesc->key());
primProc.getGLSLProcessorKey(glslCaps, &b);
if (!gen_meta_key(primProc, glslCaps, 0, &b)) {
glDesc->key().reset();
return false;
}
for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) {
const GrFragmentProcessor& fp = pipeline.getFragmentProcessor(i);
if (!gen_frag_proc_and_meta_keys(primProc, fp, glslCaps, &b)) {
glDesc->key().reset();
return false;
}
}
const GrXferProcessor& xp = pipeline.getXferProcessor();
xp.getGLSLProcessorKey(glslCaps, &b);
if (!gen_meta_key(xp, glslCaps, 0, &b)) {
glDesc->key().reset();
return false;
}
// --------DO NOT MOVE HEADER ABOVE THIS LINE--------------------------------------------------
// Because header is a pointer into the dynamic array, we can't push any new data into the key
// below here.
KeyHeader* header = glDesc->atOffset<KeyHeader, kHeaderOffset>();
// make sure any padding in the header is zeroed.
memset(header, 0, kHeaderSize);
if (pipeline.readsFragPosition()) {
header->fFragPosKey =
GrGLSLFragmentShaderBuilder::KeyForFragmentPosition(pipeline.getRenderTarget());
} else {
header->fFragPosKey = 0;
}
header->fOutputSwizzle =
glslCaps.configOutputSwizzle(pipeline.getRenderTarget()->config()).asKey();
if (pipeline.ignoresCoverage()) {
header->fIgnoresCoverage = 1;
} else {
header->fIgnoresCoverage = 0;
}
header->fSnapVerticesToPixelCenters = pipeline.snapVerticesToPixelCenters();
header->fColorEffectCnt = pipeline.numColorFragmentProcessors();
header->fCoverageEffectCnt = pipeline.numCoverageFragmentProcessors();
glDesc->finalize();
return true;
}
|