aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/gl/GrGLProgramDesc.cpp
blob: 2476c5532cc3cd89cc14af1c7ccdf4e53ccc6112 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
/*
 * Copyright 2013 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "GrGLProgramDesc.h"

#include "GrGLProcessor.h"
#include "GrProcessor.h"
#include "GrGpuGL.h"
#include "GrOptDrawState.h"
#include "SkChecksum.h"
#include "gl/builders/GrGLFragmentShaderBuilder.h"

/**
 * Do we need to either map r,g,b->a or a->r. configComponentMask indicates which channels are
 * present in the texture's config. swizzleComponentMask indicates the channels present in the
 * shader swizzle.
 */
static bool swizzle_requires_alpha_remapping(const GrGLCaps& caps,
                                             uint32_t configComponentMask,
                                             uint32_t swizzleComponentMask) {
    if (caps.textureSwizzleSupport()) {
        // Any remapping is handled using texture swizzling not shader modifications.
        return false;
    }
    // check if the texture is alpha-only
    if (kA_GrColorComponentFlag == configComponentMask) {
        if (caps.textureRedSupport() && (kA_GrColorComponentFlag & swizzleComponentMask)) {
            // we must map the swizzle 'a's to 'r'.
            return true;
        }
        if (kRGB_GrColorComponentFlags & swizzleComponentMask) {
            // The 'r', 'g', and/or 'b's must be mapped to 'a' according to our semantics that
            // alpha-only textures smear alpha across all four channels when read.
            return true;
        }
    }
    return false;
}

static uint32_t gen_attrib_key(const GrGeometryProcessor& proc) {
    uint32_t key = 0;

    const GrGeometryProcessor::VertexAttribArray& vars = proc.getAttribs();
    int numAttributes = vars.count();
    SkASSERT(numAttributes <= GrGeometryProcessor::kMaxVertexAttribs);
    for (int a = 0; a < numAttributes; ++a) {
        uint32_t value = 1 << a;
        key |= value;
    }
    return key;
}

/**
 * The key for an individual coord transform is made up of a matrix type, a precision, and a bit
 * that indicates the source of the input coords.
 */
enum {
    kMatrixTypeKeyBits   = 1,
    kMatrixTypeKeyMask   = (1 << kMatrixTypeKeyBits) - 1,
    
    kPrecisionBits       = 2,
    kPrecisionShift      = kMatrixTypeKeyBits,

    kPositionCoords_Flag = (1 << (kPrecisionShift + kPrecisionBits)),

    kTransformKeyBits    = kMatrixTypeKeyBits + kPrecisionBits + 1,
};

GR_STATIC_ASSERT(kHigh_GrSLPrecision < (1 << kPrecisionBits));

/**
 * We specialize the vertex code for each of these matrix types.
 */
enum MatrixType {
    kNoPersp_MatrixType  = 0,
    kGeneral_MatrixType  = 1,
};

static uint32_t gen_transform_key(const GrPendingFragmentStage& stage, bool useExplicitLocalCoords) {
    uint32_t totalKey = 0;
    int numTransforms = stage.getProcessor()->numTransforms();
    for (int t = 0; t < numTransforms; ++t) {
        uint32_t key = 0;
        if (stage.isPerspectiveCoordTransform(t)) {
            key |= kGeneral_MatrixType;
        } else {
            key |= kNoPersp_MatrixType;
        }

        const GrCoordTransform& coordTransform = stage.getProcessor()->coordTransform(t);
        if (kLocal_GrCoordSet != coordTransform.sourceCoords() && useExplicitLocalCoords) {
            key |= kPositionCoords_Flag;
        }

        GR_STATIC_ASSERT(kGrSLPrecisionCount <= (1 << kPrecisionBits));
        key |= (coordTransform.precision() << kPrecisionShift);

        key <<= kTransformKeyBits * t;

        SkASSERT(0 == (totalKey & key)); // keys for each transform ought not to overlap
        totalKey |= key;
    }
    return totalKey;
}

static uint32_t gen_texture_key(const GrProcessor& proc, const GrGLCaps& caps) {
    uint32_t key = 0;
    int numTextures = proc.numTextures();
    for (int t = 0; t < numTextures; ++t) {
        const GrTextureAccess& access = proc.textureAccess(t);
        uint32_t configComponentMask = GrPixelConfigComponentMask(access.getTexture()->config());
        if (swizzle_requires_alpha_remapping(caps, configComponentMask, access.swizzleMask())) {
            key |= 1 << t;
        }
    }
    return key;
}

/**
 * A function which emits a meta key into the key builder.  This is required because shader code may
 * be dependent on properties of the effect that the effect itself doesn't use
 * in its key (e.g. the pixel format of textures used). So we create a meta-key for
 * every effect using this function. It is also responsible for inserting the effect's class ID
 * which must be different for every GrProcessor subclass. It can fail if an effect uses too many
 * textures, transforms, etc, for the space allotted in the meta-key.  NOTE, both FPs and GPs share
 * this function because it is hairy, though FPs do not have attribs, and GPs do not have transforms
 */
static bool get_meta_key(const GrProcessor& proc,
                         const GrGLCaps& caps,
                         uint32_t transformKey,
                         uint32_t attribKey,
                         GrProcessorKeyBuilder* b) {
    size_t processorKeySize = b->size();
    uint32_t textureKey = gen_texture_key(proc, caps);
    uint32_t classID = proc.classID();

    // Currently we allow 16 bits for each of the above portions of the meta-key. Fail if they
    // don't fit.
    static const uint32_t kMetaKeyInvalidMask = ~((uint32_t) SK_MaxU16);
    if ((textureKey | transformKey | classID) & kMetaKeyInvalidMask) {
        return false;
    }
    if (processorKeySize > SK_MaxU16) {
        return false;
    }

    uint32_t* key = b->add32n(2);
    key[0] = (textureKey << 16 | transformKey);
    key[1] = (classID << 16 | SkToU16(processorKeySize));
    return true;
}

bool GrGLProgramDescBuilder::Build(const GrOptDrawState& optState,
                                   const GrProgramDesc::DescInfo& descInfo,
                                   GrGpu::DrawType drawType,
                                   GrGpuGL* gpu,
                                   GrProgramDesc* desc) {
    bool inputColorIsUsed = descInfo.fInputColorIsUsed;
    bool inputCoverageIsUsed = descInfo.fInputCoverageIsUsed;

    // The descriptor is used as a cache key. Thus when a field of the
    // descriptor will not affect program generation (because of the attribute
    // bindings in use or other descriptor field settings) it should be set
    // to a canonical value to avoid duplicate programs with different keys.

    bool requiresLocalCoordAttrib = descInfo.fRequiresLocalCoordAttrib;

    GR_STATIC_ASSERT(0 == kProcessorKeysOffset % sizeof(uint32_t));
    // Make room for everything up to the effect keys.
    desc->fKey.reset();
    desc->fKey.push_back_n(kProcessorKeysOffset);

    // We can only have one effect which touches the vertex shader
    if (optState.hasGeometryProcessor()) {
        const GrGeometryProcessor& gp = *optState.getGeometryProcessor();
        GrProcessorKeyBuilder b(&desc->fKey);
        gp.getGLProcessorKey(optState.getBatchTracker(), gpu->glCaps(), &b);
        if (!get_meta_key(gp, gpu->glCaps(), 0, gen_attrib_key(gp), &b)) {
            desc->fKey.reset();
            return false;
        }
    }

    for (int s = 0; s < optState.numFragmentStages(); ++s) {
        const GrPendingFragmentStage& fps = optState.getFragmentStage(s);
        const GrFragmentProcessor& fp = *fps.getProcessor();
        GrProcessorKeyBuilder b(&desc->fKey);
        fp.getGLProcessorKey(gpu->glCaps(), &b);
        if (!get_meta_key(fp, gpu->glCaps(),
                          gen_transform_key(fps, requiresLocalCoordAttrib), 0, &b)) {
            desc->fKey.reset();
            return false;
        }
    }

    const GrXferProcessor& xp = *optState.getXferProcessor();
    GrProcessorKeyBuilder b(&desc->fKey);
    xp.getGLProcessorKey(gpu->glCaps(), &b);
    if (!get_meta_key(xp, gpu->glCaps(), 0, 0, &b)) {
        desc->fKey.reset();
        return false;
    }

    // --------DO NOT MOVE HEADER ABOVE THIS LINE--------------------------------------------------
    // Because header is a pointer into the dynamic array, we can't push any new data into the key
    // below here.
    GLKeyHeader* header = desc->atOffset<GLKeyHeader, kHeaderOffset>();

    // make sure any padding in the header is zeroed.
    memset(header, 0, kHeaderSize);

    header->fHasGeometryProcessor = optState.hasGeometryProcessor();

    bool isPathRendering = GrGpu::IsPathRenderingDrawType(drawType);
    if (gpu->caps()->pathRenderingSupport() && isPathRendering) {
        header->fUseNvpr = true;
        SkASSERT(!optState.hasGeometryProcessor());
    } else {
        header->fUseNvpr = false;
    }

    bool hasUniformColor = inputColorIsUsed && (isPathRendering || !descInfo.fHasVertexColor);

    if (!inputColorIsUsed) {
        header->fColorInput = GrProgramDesc::kAllOnes_ColorInput;
    } else if (hasUniformColor) {
        header->fColorInput = GrProgramDesc::kUniform_ColorInput;
    } else {
        header->fColorInput = GrProgramDesc::kAttribute_ColorInput;
        SkASSERT(!header->fUseNvpr);
    }

    bool hasVertexCoverage = !isPathRendering && descInfo.fHasVertexCoverage;

    bool covIsSolidWhite = !hasVertexCoverage && 0xffffffff == optState.getCoverageColor();

    if (covIsSolidWhite || !inputCoverageIsUsed) {
        header->fCoverageInput = GrProgramDesc::kAllOnes_ColorInput;
    } else if (!hasVertexCoverage) {
        header->fCoverageInput = GrProgramDesc::kUniform_ColorInput;
    } else {
        header->fCoverageInput = GrProgramDesc::kAttribute_ColorInput;
        SkASSERT(!header->fUseNvpr);
    }

    if (descInfo.fReadsDst) {
        const GrDeviceCoordTexture* dstCopy = optState.getDstCopy();
        SkASSERT(dstCopy || gpu->caps()->dstReadInShaderSupport());
        const GrTexture* dstCopyTexture = NULL;
        if (dstCopy) {
            dstCopyTexture = dstCopy->texture();
        }
        header->fDstReadKey = GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTexture,
                                                                       gpu->glCaps());
        SkASSERT(0 != header->fDstReadKey);
    } else {
        header->fDstReadKey = 0;
    }

    if (descInfo.fReadsFragPosition) {
        header->fFragPosKey =
                GrGLFragmentShaderBuilder::KeyForFragmentPosition(optState.getRenderTarget(),
                                                                  gpu->glCaps());
    } else {
        header->fFragPosKey = 0;
    }

    header->fColorEffectCnt = optState.numColorStages();
    header->fCoverageEffectCnt = optState.numCoverageStages();
    desc->finalize();
    return true;
}