1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgram.h"
#include "GrAllocator.h"
#include "GrProcessor.h"
#include "GrCoordTransform.h"
#include "GrGLGpu.h"
#include "GrGLPathRendering.h"
#include "GrPathProcessor.h"
#include "GrPipeline.h"
#include "GrXferProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLXferProcessor.h"
#include "SkXfermode.h"
#define GL_CALL(X) GR_GL_CALL(fGpu->glInterface(), X)
#define GL_CALL_RET(R, X) GR_GL_CALL_RET(fGpu->glInterface(), R, X)
///////////////////////////////////////////////////////////////////////////////////////////////////
GrGLProgram::GrGLProgram(GrGLGpu* gpu,
const GrProgramDesc& desc,
const BuiltinUniformHandles& builtinUniforms,
GrGLuint programID,
const UniformInfoArray& uniforms,
const VaryingInfoArray& pathProcVaryings,
GrGLInstalledGeoProc* geometryProcessor,
GrGLInstalledXferProc* xferProcessor,
GrGLInstalledFragProcs* fragmentProcessors,
SkTArray<UniformHandle>* passSamplerUniforms)
: fBuiltinUniformHandles(builtinUniforms)
, fProgramID(programID)
, fGeometryProcessor(geometryProcessor)
, fXferProcessor(xferProcessor)
, fFragmentProcessors(SkRef(fragmentProcessors))
, fDesc(desc)
, fGpu(gpu)
, fProgramDataManager(gpu, programID, uniforms, pathProcVaryings) {
fSamplerUniforms.swap(passSamplerUniforms);
// Assign texture units to sampler uniforms one time up front.
GL_CALL(UseProgram(fProgramID));
for (int i = 0; i < fSamplerUniforms.count(); i++) {
fProgramDataManager.setSampler(fSamplerUniforms[i], i);
}
}
GrGLProgram::~GrGLProgram() {
if (fProgramID) {
GL_CALL(DeleteProgram(fProgramID));
}
}
void GrGLProgram::abandon() {
fProgramID = 0;
}
///////////////////////////////////////////////////////////////////////////////
template <class Proc>
static void append_texture_bindings(const Proc* ip,
const GrProcessor& processor,
SkTArray<const GrTextureAccess*>* textureBindings) {
if (int numTextures = processor.numTextures()) {
SkASSERT(textureBindings->count() == ip->fSamplersIdx);
const GrTextureAccess** bindings = textureBindings->push_back_n(numTextures);
int i = 0;
do {
bindings[i] = &processor.textureAccess(i);
} while (++i < numTextures);
}
}
void GrGLProgram::setData(const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
SkTArray<const GrTextureAccess*>* textureBindings) {
this->setRenderTargetState(primProc, pipeline);
// we set the textures, and uniforms for installed processors in a generic way, but subclasses
// of GLProgram determine how to set coord transforms
fGeometryProcessor->fGLProc->setData(fProgramDataManager, primProc);
append_texture_bindings(fGeometryProcessor.get(), primProc, textureBindings);
this->setFragmentData(primProc, pipeline, textureBindings);
const GrXferProcessor& xp = *pipeline.getXferProcessor();
fXferProcessor->fGLProc->setData(fProgramDataManager, xp);
append_texture_bindings(fXferProcessor.get(), xp, textureBindings);
}
void GrGLProgram::setFragmentData(const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline,
SkTArray<const GrTextureAccess*>* textureBindings) {
int numProcessors = fFragmentProcessors->fProcs.count();
for (int i = 0; i < numProcessors; ++i) {
const GrFragmentProcessor& processor = pipeline.getFragmentProcessor(i);
fFragmentProcessors->fProcs[i]->fGLProc->setData(fProgramDataManager, processor);
this->setTransformData(primProc,
processor,
i,
fFragmentProcessors->fProcs[i]);
append_texture_bindings(fFragmentProcessors->fProcs[i], processor, textureBindings);
}
}
void GrGLProgram::setTransformData(const GrPrimitiveProcessor& primProc,
const GrFragmentProcessor& processor,
int index,
GrGLInstalledFragProc* ip) {
GrGLSLPrimitiveProcessor* gp = fGeometryProcessor.get()->fGLProc.get();
gp->setTransformData(primProc, fProgramDataManager, index,
processor.coordTransforms());
}
void GrGLProgram::setRenderTargetState(const GrPrimitiveProcessor& primProc,
const GrPipeline& pipeline) {
// Load the RT height uniform if it is needed to y-flip gl_FragCoord.
if (fBuiltinUniformHandles.fRTHeightUni.isValid() &&
fRenderTargetState.fRenderTargetSize.fHeight != pipeline.getRenderTarget()->height()) {
fProgramDataManager.set1f(fBuiltinUniformHandles.fRTHeightUni,
SkIntToScalar(pipeline.getRenderTarget()->height()));
}
// set RT adjustment
const GrRenderTarget* rt = pipeline.getRenderTarget();
SkISize size;
size.set(rt->width(), rt->height());
if (!primProc.isPathRendering()) {
if (fRenderTargetState.fRenderTargetOrigin != rt->origin() ||
fRenderTargetState.fRenderTargetSize != size) {
fRenderTargetState.fRenderTargetSize = size;
fRenderTargetState.fRenderTargetOrigin = rt->origin();
float rtAdjustmentVec[4];
fRenderTargetState.getRTAdjustmentVec(rtAdjustmentVec);
fProgramDataManager.set4fv(fBuiltinUniformHandles.fRTAdjustmentUni, 1, rtAdjustmentVec);
}
} else {
SkASSERT(fGpu->glCaps().shaderCaps()->pathRenderingSupport());
const GrPathProcessor& pathProc = primProc.cast<GrPathProcessor>();
fGpu->glPathRendering()->setProjectionMatrix(pathProc.viewMatrix(),
size, rt->origin());
}
}
|