1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLPath.h"
#include "GrGLPathRendering.h"
#include "GrGLGpu.h"
#include "GrStyle.h"
namespace {
inline GrGLubyte verb_to_gl_path_cmd(SkPath::Verb verb) {
static const GrGLubyte gTable[] = {
GR_GL_MOVE_TO,
GR_GL_LINE_TO,
GR_GL_QUADRATIC_CURVE_TO,
GR_GL_CONIC_CURVE_TO,
GR_GL_CUBIC_CURVE_TO,
GR_GL_CLOSE_PATH,
};
GR_STATIC_ASSERT(0 == SkPath::kMove_Verb);
GR_STATIC_ASSERT(1 == SkPath::kLine_Verb);
GR_STATIC_ASSERT(2 == SkPath::kQuad_Verb);
GR_STATIC_ASSERT(3 == SkPath::kConic_Verb);
GR_STATIC_ASSERT(4 == SkPath::kCubic_Verb);
GR_STATIC_ASSERT(5 == SkPath::kClose_Verb);
SkASSERT(verb >= 0 && (size_t)verb < SK_ARRAY_COUNT(gTable));
return gTable[verb];
}
#ifdef SK_DEBUG
inline int num_coords(SkPath::Verb verb) {
static const int gTable[] = {
2, // move
2, // line
4, // quad
5, // conic
6, // cubic
0, // close
};
GR_STATIC_ASSERT(0 == SkPath::kMove_Verb);
GR_STATIC_ASSERT(1 == SkPath::kLine_Verb);
GR_STATIC_ASSERT(2 == SkPath::kQuad_Verb);
GR_STATIC_ASSERT(3 == SkPath::kConic_Verb);
GR_STATIC_ASSERT(4 == SkPath::kCubic_Verb);
GR_STATIC_ASSERT(5 == SkPath::kClose_Verb);
SkASSERT(verb >= 0 && (size_t)verb < SK_ARRAY_COUNT(gTable));
return gTable[verb];
}
#endif
inline GrGLenum join_to_gl_join(SkPaint::Join join) {
static GrGLenum gSkJoinsToGrGLJoins[] = {
GR_GL_MITER_REVERT,
GR_GL_ROUND,
GR_GL_BEVEL
};
return gSkJoinsToGrGLJoins[join];
GR_STATIC_ASSERT(0 == SkPaint::kMiter_Join);
GR_STATIC_ASSERT(1 == SkPaint::kRound_Join);
GR_STATIC_ASSERT(2 == SkPaint::kBevel_Join);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gSkJoinsToGrGLJoins) == SkPaint::kJoinCount);
}
inline GrGLenum cap_to_gl_cap(SkPaint::Cap cap) {
static GrGLenum gSkCapsToGrGLCaps[] = {
GR_GL_FLAT,
GR_GL_ROUND,
GR_GL_SQUARE
};
return gSkCapsToGrGLCaps[cap];
GR_STATIC_ASSERT(0 == SkPaint::kButt_Cap);
GR_STATIC_ASSERT(1 == SkPaint::kRound_Cap);
GR_STATIC_ASSERT(2 == SkPaint::kSquare_Cap);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(gSkCapsToGrGLCaps) == SkPaint::kCapCount);
}
#ifdef SK_DEBUG
inline void verify_floats(const float* floats, int count) {
for (int i = 0; i < count; ++i) {
SkASSERT(!SkScalarIsNaN(SkFloatToScalar(floats[i])));
}
}
#endif
inline void points_to_coords(const SkPoint points[], size_t first_point, size_t amount,
GrGLfloat coords[]) {
for (size_t i = 0; i < amount; ++i) {
coords[i * 2] = SkScalarToFloat(points[first_point + i].fX);
coords[i * 2 + 1] = SkScalarToFloat(points[first_point + i].fY);
}
}
template<bool checkForDegenerates>
inline bool init_path_object_for_general_path(GrGLGpu* gpu, GrGLuint pathID,
const SkPath& skPath) {
SkDEBUGCODE(int numCoords = 0);
int verbCnt = skPath.countVerbs();
int pointCnt = skPath.countPoints();
int minCoordCnt = pointCnt * 2;
SkSTArray<16, GrGLubyte, true> pathCommands(verbCnt);
SkSTArray<16, GrGLfloat, true> pathCoords(minCoordCnt);
bool lastVerbWasMove = true; // A path with just "close;" means "moveto(0,0); close;"
SkPoint points[4];
SkPath::RawIter iter(skPath);
SkPath::Verb verb;
while ((verb = iter.next(points)) != SkPath::kDone_Verb) {
pathCommands.push_back(verb_to_gl_path_cmd(verb));
GrGLfloat coords[6];
int coordsForVerb;
switch (verb) {
case SkPath::kMove_Verb:
if (checkForDegenerates) {
lastVerbWasMove = true;
}
points_to_coords(points, 0, 1, coords);
coordsForVerb = 2;
break;
case SkPath::kLine_Verb:
if (checkForDegenerates) {
if (SkPath::IsLineDegenerate(points[0], points[1], true)) {
return false;
}
lastVerbWasMove = false;
}
points_to_coords(points, 1, 1, coords);
coordsForVerb = 2;
break;
case SkPath::kConic_Verb:
if (checkForDegenerates) {
if (SkPath::IsQuadDegenerate(points[0], points[1], points[2], true)) {
return false;
}
lastVerbWasMove = false;
}
points_to_coords(points, 1, 2, coords);
coords[4] = SkScalarToFloat(iter.conicWeight());
coordsForVerb = 5;
break;
case SkPath::kQuad_Verb:
if (checkForDegenerates) {
if (SkPath::IsQuadDegenerate(points[0], points[1], points[2], true)) {
return false;
}
lastVerbWasMove = false;
}
points_to_coords(points, 1, 2, coords);
coordsForVerb = 4;
break;
case SkPath::kCubic_Verb:
if (checkForDegenerates) {
if (SkPath::IsCubicDegenerate(points[0], points[1], points[2], points[3],
true)) {
return false;
}
lastVerbWasMove = false;
}
points_to_coords(points, 1, 3, coords);
coordsForVerb = 6;
break;
case SkPath::kClose_Verb:
if (checkForDegenerates) {
if (lastVerbWasMove) {
// Interpret "move(x,y);close;" as "move(x,y);lineto(x,y);close;".
// which produces a degenerate segment.
return false;
}
}
continue;
default:
SkASSERT(false); // Not reached.
continue;
}
SkDEBUGCODE(numCoords += num_coords(verb));
SkDEBUGCODE(verify_floats(coords, coordsForVerb));
pathCoords.push_back_n(coordsForVerb, coords);
}
SkASSERT(verbCnt == pathCommands.count());
SkASSERT(numCoords == pathCoords.count());
GR_GL_CALL(gpu->glInterface(),
PathCommands(pathID, pathCommands.count(), pathCommands.begin(),
pathCoords.count(), GR_GL_FLOAT, pathCoords.begin()));
return true;
}
/*
* For now paths only natively support winding and even odd fill types
*/
static GrPathRendering::FillType convert_skpath_filltype(SkPath::FillType fill) {
switch (fill) {
default:
SkFAIL("Incomplete Switch\n");
case SkPath::kWinding_FillType:
case SkPath::kInverseWinding_FillType:
return GrPathRendering::kWinding_FillType;
case SkPath::kEvenOdd_FillType:
case SkPath::kInverseEvenOdd_FillType:
return GrPathRendering::kEvenOdd_FillType;
}
}
} // namespace
bool GrGLPath::InitPathObjectPathDataCheckingDegenerates(GrGLGpu* gpu, GrGLuint pathID,
const SkPath& skPath) {
return init_path_object_for_general_path<true>(gpu, pathID, skPath);
}
void GrGLPath::InitPathObjectPathData(GrGLGpu* gpu,
GrGLuint pathID,
const SkPath& skPath) {
SkASSERT(!skPath.isEmpty());
#ifdef SK_SCALAR_IS_FLOAT
// This branch does type punning, converting SkPoint* to GrGLfloat*.
if ((skPath.getSegmentMasks() & SkPath::kConic_SegmentMask) == 0) {
int verbCnt = skPath.countVerbs();
int pointCnt = skPath.countPoints();
int coordCnt = pointCnt * 2;
SkSTArray<16, GrGLubyte, true> pathCommands(verbCnt);
SkSTArray<16, GrGLfloat, true> pathCoords(coordCnt);
static_assert(sizeof(SkPoint) == sizeof(GrGLfloat) * 2, "sk_point_not_two_floats");
pathCommands.resize_back(verbCnt);
pathCoords.resize_back(coordCnt);
skPath.getPoints(reinterpret_cast<SkPoint*>(&pathCoords[0]), pointCnt);
skPath.getVerbs(&pathCommands[0], verbCnt);
SkDEBUGCODE(int verbCoordCnt = 0);
for (int i = 0; i < verbCnt; ++i) {
SkPath::Verb v = static_cast<SkPath::Verb>(pathCommands[i]);
pathCommands[i] = verb_to_gl_path_cmd(v);
SkDEBUGCODE(verbCoordCnt += num_coords(v));
}
SkASSERT(verbCnt == pathCommands.count());
SkASSERT(verbCoordCnt == pathCoords.count());
SkDEBUGCODE(verify_floats(&pathCoords[0], pathCoords.count()));
GR_GL_CALL(gpu->glInterface(), PathCommands(pathID, pathCommands.count(), &pathCommands[0],
pathCoords.count(), GR_GL_FLOAT,
&pathCoords[0]));
return;
}
#endif
SkAssertResult(init_path_object_for_general_path<false>(gpu, pathID, skPath));
}
void GrGLPath::InitPathObjectStroke(GrGLGpu* gpu, GrGLuint pathID, const SkStrokeRec& stroke) {
SkASSERT(!stroke.isHairlineStyle());
GR_GL_CALL(gpu->glInterface(),
PathParameterf(pathID, GR_GL_PATH_STROKE_WIDTH, SkScalarToFloat(stroke.getWidth())));
GR_GL_CALL(gpu->glInterface(),
PathParameterf(pathID, GR_GL_PATH_MITER_LIMIT, SkScalarToFloat(stroke.getMiter())));
GrGLenum join = join_to_gl_join(stroke.getJoin());
GR_GL_CALL(gpu->glInterface(), PathParameteri(pathID, GR_GL_PATH_JOIN_STYLE, join));
GrGLenum cap = cap_to_gl_cap(stroke.getCap());
GR_GL_CALL(gpu->glInterface(), PathParameteri(pathID, GR_GL_PATH_END_CAPS, cap));
GR_GL_CALL(gpu->glInterface(), PathParameterf(pathID, GR_GL_PATH_STROKE_BOUND, 0.02f));
}
void GrGLPath::InitPathObjectEmptyPath(GrGLGpu* gpu, GrGLuint pathID) {
GR_GL_CALL(gpu->glInterface(), PathCommands(pathID, 0, nullptr, 0, GR_GL_FLOAT, nullptr));
}
GrGLPath::GrGLPath(GrGLGpu* gpu, const SkPath& origSkPath, const GrStyle& style)
: INHERITED(gpu, origSkPath, style),
fPathID(gpu->glPathRendering()->genPaths(1)) {
if (origSkPath.isEmpty()) {
InitPathObjectEmptyPath(gpu, fPathID);
fShouldStroke = false;
fShouldFill = false;
} else {
const SkPath* skPath = &origSkPath;
SkTLazy<SkPath> tmpPath;
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
if (style.pathEffect()) {
// Skia stroking and NVPR stroking differ with respect to dashing
// pattern.
// Convert a dashing (or other path effect) to either a stroke or a fill.
if (style.applyPathEffectToPath(tmpPath.init(), &stroke, *skPath, SK_Scalar1)) {
skPath = tmpPath.get();
}
} else {
stroke = style.strokeRec();
}
bool didInit = false;
if (stroke.needToApply() && stroke.getCap() != SkPaint::kButt_Cap) {
// Skia stroking and NVPR stroking differ with respect to stroking
// end caps of empty subpaths.
// Convert stroke to fill if path contains empty subpaths.
didInit = InitPathObjectPathDataCheckingDegenerates(gpu, fPathID, *skPath);
if (!didInit) {
if (!tmpPath.isValid()) {
tmpPath.init();
}
SkAssertResult(stroke.applyToPath(tmpPath.get(), *skPath));
skPath = tmpPath.get();
stroke.setFillStyle();
}
}
if (!didInit) {
InitPathObjectPathData(gpu, fPathID, *skPath);
}
fShouldStroke = stroke.needToApply();
fShouldFill = stroke.isFillStyle() ||
stroke.getStyle() == SkStrokeRec::kStrokeAndFill_Style;
fFillType = convert_skpath_filltype(skPath->getFillType());
fBounds = skPath->getBounds();
SkScalar radius = stroke.getInflationRadius();
fBounds.outset(radius, radius);
if (fShouldStroke) {
InitPathObjectStroke(gpu, fPathID, stroke);
}
}
this->registerWithCache(SkBudgeted::kYes);
}
void GrGLPath::onRelease() {
if (0 != fPathID) {
static_cast<GrGLGpu*>(this->getGpu())->glPathRendering()->deletePaths(fPathID, 1);
fPathID = 0;
}
INHERITED::onRelease();
}
void GrGLPath::onAbandon() {
fPathID = 0;
INHERITED::onAbandon();
}
|